CIE IGCSE Physics Formula Sheet (2023, 2024 and 2025 Syllabus)

Chapter 1: General Physics	
distance (m)	
Average speed (ms ⁻¹) = $\frac{\text{distance (m)}}{\text{time (s)}}$	$s = \frac{d}{t}$
Average velocity (ms ⁻¹) = $\frac{\text{displacement (m)}}{\text{time (s)}}$	$v = \frac{x}{t}$
Acceleration (ms ⁻²) = $\frac{\text{final velocity (ms}^{-1}) - \text{initial velocity (ms}^{-1})}{\text{time (s)}}$	$a = \frac{v - u}{t}$
time (s)	t
Weight (N) = mass (kg) \times gravitational field strength (ms ⁻²)	W = mg
Earth's gravitational field strength = 9.8 ms^{-2} (as of 2023)	
Force (N) = mass (kg) \times acceleration (ms ⁻²)	F = ma
Density (kgm ⁻³) = $\frac{\text{mass (kg)}}{\text{volume}^3}$	$ \rho = \frac{m}{V} $
Hooke's law: Force (N) = constant (Nm $^{-1}$) × extension (m)	F = kx
$Pressure(Pa) = \frac{Force (N)}{area (m^2)}$	$P = \frac{F}{A}$
Fluid Pressure (Pa) = density (kgm $^{-3}$) × gravitational field strength (ms $^{-2}$ or Nkg $^{-1}$) ×	$P = \rho g h$
height (m)	
Work (J) = force $(N) \times$ distance moved (m)	W = Fd
$Power(W) = \frac{work(J)}{time(s)}$	$W = Fd$ $P = \frac{W}{t}$
Kinetic Energy (J) = $\frac{1}{2}$ × mass (kg) × velocity ² (ms ⁻¹)	$KE = \frac{1}{2}mv^2$
Gravitational potential energy (J) = mass (kg) \times gravitational field strength (ms ⁻² or	GPE = mgh
Nkg^{-1}) × height (m)	5
Efficiency (%) = $\frac{\text{useful power output (W or J)}}{\text{total power input (W or J)}} \times 100\%$	$\eta = \frac{P_{out}}{P_{in}} \times 100\%$
Moment (Nm) = Force (N) \times perpendicular distance from pivot (m)	M = Fd
Sum of clockwise moments (Nm) = sum of anticlockwise moments (Nm)	$F_1d_1 = F_2d_2$
Momentum (kgms ⁻¹) = mass (kg) \times velocity (ms ⁻¹)	
change in momentum (kgms ⁻¹)	$p = mv$ $F = \frac{\Delta p}{t}$
Impulsive Force (N) = $\frac{\text{change in infoliction (kgins)}}{\text{time (s)}}$	$F = \frac{-F}{t}$
Impulse (kgms ⁻¹ or Ns) = change in momentum (kgms ⁻¹)	$\Delta p = mv - mu$
Chapter 2: Thermal Physics	·
Boyle's Law for changes in gas pressure at constant temperature : pressure ₁ (Pa) × volume ₁ (m ³) = pressure ₂ (Pa)× volume ₂ (m ³)	$P_1V_1 = P_2V_2$
Energy (J) = mass (kg) × specific heat capacity (Jkg $^{-1}$ °C $^{-1}$) × temperature change (°C)	$Q = mc\theta$
Celsius to Kelvin:	C = K - 273.15
Temperature in Celsius (°C) = Temperature in Kelvin (K) - 273.15 Chapter 3: Waves	
Wave speed (ms ⁻¹) = frequency (Hz) \times wavelength (m)	$V = f\lambda$
Frequency (Hz) = $\frac{1}{\text{Period (s)}}$	$F = \frac{1}{T}$
sine of the angle of incidence, i	$n = \frac{\sin i}{1 - \sin i}$
Refractive index = speed of light in vacuum Refractive index = speed of light in vacuum	$ \frac{\sin r}{n = \frac{c}{-}} $
speed of light in material	v
Refractive index = $\frac{1}{\text{sine of critical angle}}$	$n = \frac{1}{\sin c}$

Chapter 4: Electricity and Magnetism		
$Current (A) = \frac{charge (C)}{time (s)}$	$I = \frac{Q}{t}$	
$Voltage (V) = \frac{energy transferred (J)}{charge (C)}$	$V = \frac{W}{Q}$	
Voltage (V) = current (A) \times resistance (Ω)	V = IR	
Power (W) = current (A) \times voltage (V)	P = IV	
Power (W) = current ² (A) \times resistance (Ω)	$P = I^2R$	
Energy transferred (J) = current (A) \times voltage (V) \times time (s)	W = IVt	
Energy transferred (J) = power (W) \times time (s)	W = Pt	
Resistors in series: Total Resistance (Ω) = sum of individual resistors (Ω)	$R_{total} = R_1 + R_2 + R_3 + \dots R_n$	
Resistors in parallel: 1 1	$\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots \frac{1}{R_n}$	
$\frac{1}{\text{total resistance }(\Omega)} = \frac{1}{\text{sum of individual resistors }(\Omega)}$		
Resistance (Ω) = $\frac{\text{resistivity } (\Omega \text{m}) \times \text{length } (\text{m})}{area(\text{m}^2)}$	$R = \frac{\rho l}{A}$	
Wires have a circular cross section, area = $\pi \times \text{radius}^2$		
Transformers: $\frac{\text{voltage in secondary coil (V)}}{\text{turns on secondary coil}} = \frac{\text{turns on secondary coil}}{\text{turns on secondary coil}}$	$\frac{V_s}{V_p} = \frac{N_s}{N_p}$	
voltage in primary coil (V) turns on primary coil		
Transformers: voltage in secondary coil (V) _ current in secondary coil (A)	$\frac{V_s}{V_p} = \frac{I_s}{I_p}$	
$\frac{1}{\text{voltage in primary coil (V)}} = \frac{1}{\text{current in primary coil (A)}}$		
Chapter 5: Nuclear Physics		
Alpha:	${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-4}Y + {}_{2}^{4}He$	
$^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$		
Beta:	${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}Y + {}_{-1}^{0}e$	
$^{234}_{90}Th \rightarrow ^{234}_{91}Pa + ^{0}_{-1}e$		
Gamma	${}_Z^A X \rightarrow {}_Z^A Y + \gamma$	
Chapter 6: Space Physics		
Average orbital speed (ms ⁻¹) = $\frac{2 \times \pi \times \text{average radius of the orbit (m)}}{\text{orbital period (s)}}$	$v = \frac{2\pi r}{T}$	
distance of a far galaxy (m) 1	d 1	
$\frac{1}{\text{speed away from us } (ms^{-1})} = \frac{1}{\text{Hubble Constant } (s^{-1})}$ Hubble Constant is $2.2 \times 10^{-18} \text{ s}^{-1}$	$\frac{1}{v} = \frac{1}{H_0}$	
Trabble deliberation and To 3	1	