5.4 Data and formulae

The following data and formulae will appear as pages 2 and 3 in Papers 1, 2 and 4.

Data

speed of light in free space	$c = 3.00 \times 10^8 \mathrm{ms^{-1}}$		
permeability of free space	$\mu_0 = 4\pi \times 10^{-7} \mathrm{Hm^{-1}}$		
permittivity of free space	$\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{F m^{-1}}$		
	$(\frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 \mathrm{mF^{-1}})$		
elementary charge	e = 1.60 × 10 ⁻¹⁹ C		
the Planck constant	$h = 6.63 \times 10^{-34} \mathrm{Js}$		
unified atomic mass unit	$1 u = 1.66 \times 10^{-27} \text{ kg}$		
rest mass of electron	$m_{\rm e} = 9.11 \times 10^{-31} \rm kg$		
rest mass of proton	$m_{\rm p} = 1.67 \times 10^{-27} \rm kg$		
molar gas constant	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$		
the Avogadro constant	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol^{-1}}$		
the Boltzmann constant	$k = 1.38 \times 10^{-23} \mathrm{JK^{-1}}$		

Formulae

uniformly accelerated motion	s	=	$ut + \frac{1}{2}at^2$
	V^2	=	u ² +2as

work done on/by a gas
$$W = p\Delta V$$

gravitational potential
$$\phi = -\frac{Gm}{r}$$

hydrostatic pressure
$$p = \rho g h$$

pressure of an ideal gas
$$p = \frac{1}{3} \frac{Nm}{V} \langle c^2 \rangle$$

simple harmonic motion
$$a = -\omega^2 x$$

velocity of particle in s.h.m.
$$v = v_0 \cos \omega t \\ v = \pm \omega \sqrt{(x_0^2 - x^2)}$$

Doppler effect
$$f_0 = \frac{f_s v}{v \pm v_s}$$

electric potential
$$V = \frac{Q}{4\pi\varepsilon_0 r}$$

capacitors in series
$$1/C = 1/C_1 + 1/C_2 + \dots$$

capacitors in parallel
$$C = C_1 + C_2 + \dots$$

energy of charged capacitor
$$W = \frac{1}{2}QV$$

electric current
$$I = Anvq$$

resistors in series
$$R = R_1 + R_2 + \dots$$

resistors in parallel
$$1/R = 1/R_1 + 1/R_2 + \dots$$

Hall voltage
$$V_{H} = \frac{BI}{ntq}$$

alternating current/voltage
$$X = X_0 \sin \omega t$$

radioactive decay
$$X = X_0 \exp(-\lambda t)$$

decay constant
$$\lambda = \frac{0.693}{t_{\frac{1}{2}}}$$