The **Ultimate** Formula Sheet for ACT Math

The ACT does not provide any formulas. Be prepared by making sure to have these ones memorized.

Fractions, Decimals, & Percentages: (for this section, r is the percent in decimal form)

Fraction =
$$\frac{part}{whole}$$
; Percent = $\frac{part}{100}$

Percent Increase or Decrease: $\frac{|old-new|}{old} \times 100\%$

Increase by a percent: multiply by (1+r)

Decrease by a percent: multiply by (1-r)

Simple Interest:
$$A = P(1+rt)$$

Interest Compounded Annually: $A = P(1+r)^t$

Interest Compounded n times per year:

$$A = P \left(1 + \frac{r}{n} \right)^{nt}$$

Rates, Ratios, & Proportions:

General form of a conversion factor:

$$\left(\frac{\text{ending}_\text{units}}{\text{starting}_\text{units}}\right)$$

Example:
$$10 feet \left(\frac{12 inches}{1 foot} \right) = 120 inches$$

(Concentration of A x Volume of A)

+ (Concentration of B x Volume of B)

= Final concentration (Vol. of A + Vol. of B)

Distance = Rate x Time

Exponents, Roots, & Polynomials:

Multiplication Rule for Exponents: $a^b \cdot a^c = a^{b+c}$

Division Rule for Exponents: $\frac{a^b}{a^c} = a^{b-c}$

Power Rule for Exponents: $(a^b)^c = a^{bc}$

Negative Exponents: $a^{-b} = \frac{1}{a^b}$

Fractional Exponents:
$$a^{\frac{b}{c}} = \sqrt[c]{a^b} or (\sqrt[c]{a})^b$$

$$i = \sqrt{-1}$$
; $i^2 = -1$; $i^3 = -i$; $i^4 = 1$

$$i^{4n} = 1$$
; $i^{4n+1} = i$; $i^{4n+2} = -1$; $i^{4n+3} = -i$

Complex Conjugates: (a+bi)(a-bi)

Parabolas:

Standard Form:
$$f(x) = ax^2 + bx + c$$
;

vertex=
$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$
;

x-intercepts =
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Sum of solutions =
$$\frac{-b}{a}$$

Discriminant =
$$b^2 - 4ac$$
; Pos=2 real roots

Factored Form:
$$f(x) = a(x-m)(x-n)$$
;

x-coordinate of vertex =
$$\frac{m+n}{2}$$

Vertex Form:
$$f(x) = a(x-h)^2 + k$$
;

$$vertex = (h,k)$$

Difference of Squares: $a^2 - b^2 = (a+b)(a-b)$

Sum of Cubes: $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$

Difference of Cubes: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

Perfect Square Trinomial: $a^2 + 2ab + b^2 = (a+b)^2$ and $a^2 - 2ab + b^2 = (a-b)^2$

Completing the Square: $x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$

Graphing Lines:

Slope Formula:
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Slope of horizontal line = 0

Slope of vertical line = undefined

Standard Form: Ax + By = C

Slope-Intercept Form: y = mx + b

Point-Slope Form: $y - y_1 = m(x - x_1)$

Distance Formula: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Midpoint Formula: $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Parallel lines: equal slopes

⊥ Lines: slopes are opposite reciprocals

Parent Graphs & Transformations:

Transformation	Visual effect
f(x)+k	Shift up by k units
f(x)-k	Shift down by k units
f(x+h)	Shift left by h units
f(x-h)	Shift right by h units
-f(x)	Reflect over the x axis (flip upside down)
cf(x)	Stretch vertically by a factor of c (becomes skinnier)
$\frac{1}{c}f(x)$	Shrink vertically by a factor of c (becomes fatter)

Data & Probability:

$$Average = \frac{sum_of_items}{number_of_items}$$
Probability that independent events A and B will both happen: $P(A \cap B) = P(A) \times P(B)$

Median = center data point Probability that either A or B will happen:
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Mode = most frequent data point

Range = maximum - minimum

Expected Value:
$$E(x) = \sum_{i=1}^{n} x_i \cdot P(x_i)$$

$$Probability = \frac{desired_outcomes}{possible_outcomes}$$

Angles:

Vertical
$$\angle$$
's are \cong \angle 's that form a circle add up to 360°

∠'s that form a linear pair are supplementary (add	When ∥ lines are cut by a transversal, all acute ∠'s
up to 180°)	are ≅ and all obtuse ∠'s are ≅

Triangles:

Area of a Triangle:
$$A = \frac{1}{2}bh$$

The three \angle 's of a \triangle add up to 180°

An exterior \angle is equal to the sum of the two remote interior \angle 's

Pythagorean Theorem:
$$a^2 + b^2 = c^2$$

Pythagorean Triples: 3-4-5 and 5-12-13

Special Right Triangles:

Circles:

Area of a Circle: $A = \pi r^2$

A radius and tangent make a right ∠

Circumference of a Circle: $C = 2\pi r$

A central \angle is double the inscribed \angle

$$\frac{x}{360} = \frac{arc}{circumference}$$

and
$$\frac{x}{360} = \frac{\text{sector}}{\text{area_of_circl}}$$

where x = central angle

Polygons: (for this section, n is the number of sides)

Area of a Rectangle:
$$A = Iw$$

One int.
$$\angle$$
 of a regular polygon: $\frac{180(n-2)}{n}$

Area of a trapezoid:
$$\frac{1}{2}(b_1 + b_2)h$$

of diagonals:
$$\frac{n(n-3)}{2}$$
 (convex only)

Sum of the exterior angles: 360°

Sum of the interior angles: 180(n-2)

Properties of Parallelograms:

1. Opp sides are
$$\parallel$$
 and \cong

2. Opp \angle 's are \cong

1. Opp sides are
$$∥$$
 and $≅$

4. Each diagonal forms a pair of
$$\cong \Delta$$
's

$$\rightarrow$$
 If they are \cong it is a rectangle

6. Area = base
$$\times$$
 height

Solids:

Volume of a Rectangular Prism (Box):
$$V = lwh$$

Surface Area of a Box:
$$SA = 2(Iw + Ih + wh)$$

Volume of a Cylinder:
$$V = \pi r^2 h$$

Surface Area of a Cylinder:
$$SA = 2\pi r^2 + 2\pi rh$$

Volume of a Sphere:
$$V = \frac{4}{3}\pi r^3$$

Volume of a Cone:
$$V = \frac{1}{3}\pi r^2 h$$

Volume of a Pyramid:
$$V = \frac{1}{3}lwh$$

Trigonometry:

$$\sin = \frac{opp}{hyp}$$

$$\cos = \frac{adj}{hyn}$$

$$\tan = \frac{opp}{adi}$$

$$csc(x) = \frac{1}{cin(x)}$$

$$\sin = \frac{opp}{hyp}$$
 $\cos = \frac{adj}{hyp}$ $\tan = \frac{opp}{adj}$ $\csc(x) = \frac{1}{\sin(x)}$ $\sec(x) = \frac{1}{\cos(x)}$ $\cot(x) = \frac{1}{\tan(x)}$

$$\cot(x) = \frac{1}{\tan(x)}$$

$$360^{\circ}=2\pi \text{ radians}$$
 $\tan x = \frac{\sin x}{\cos x}$

$$\tan x = \frac{\sin x}{\cos x}$$

$$\sin^2 x + \cos^2 x = 1$$

$$\sin^2 x + \cos^2 x = 1$$
 $\sin(x) = \cos(90 - x)$

Law of Sines:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Law of Cosines:
$$a^2 = b^2 + c^2 - 2bc \cdot \cos(A)$$

 $y = \sin(x)$

$$y = tan(x)$$

If $y = A\sin(Bx - C) + D$ (also for cos, csc, and sec)

Period:
$$\frac{2\pi}{R}$$

Phase Shift:
$$\frac{C}{B}$$

If $y = A \tan(Bx - C) + D$ (also for cot)

Period:
$$\frac{\pi}{B}$$

Phase Shift:
$$\frac{C}{B}$$

Sequences and Series: where a_1 = first term, n = number of terms, d = common difference, r = common ratio

Arithmetic sequence:
$$a_n = a_1 + (n-1)d$$

Geometric sequence:
$$a_n = a_1 r^{n-1}$$

Sum of an arithmetic series:
$$S_n = \frac{n}{2}(a_1 + a_n)$$

Sum of a geometric series:
$$S_n = \frac{a_1(r^n - 1)}{r - 1}$$

Logarithms:

If
$$\log_b a = x$$
, then $b^x = a$

$$\log_b a = \frac{\log a}{\log b}$$

Vector Addition:
$$\vec{a} + \vec{b} = \sqrt{a^2 + b^2 + 2ab\cos\theta}$$

Matrix Multiplication: Only possible when columns of first = rows of second

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \times \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{pmatrix}$$

Determinant of
$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = AD - BC$$

Conic Sections:

Circle: $(x-h)^2 + (y-k)^2 = r^2$, where (h,k) is the center and r is the radius

Ellipse: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ where (h,k) is the center, 2a is the horizontal axis, and 2b is the vertical axis

Horizontal Ellipse: $a^2 = b^2 + c^2$ Vertical Ellipse: $b^2 = a^2 + c^2$ where c is the distance from center to focus

Horizontal Hyperbola:
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$
 Vertical Hyperbola: $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$