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The electronic states of a self-assembled quantum lens (SAQL) under application of a normal
electric field are theoretically investigated for different values of the electric field and lens geome-
try. Using a conformal analytical image, the lens boundary and the one particle Hamiltonian are
mapped into an equivalent operator defined in a semi-spherical boundary. The complete set of
solutions for the Stark effect in a quantum lens confined by an infinite barrier is reported. The
numerical calculations indicate that the interplay of the lens geometry and the electric field on
electrons in the SAQL leads to complicated electron eigenenergies and eigenfunctions. Also, the
interactions between states with the same symmetry and anticrossing effects on the energy levels
and wavefunctions sharing the same z-angular momentum components are analyzed.

Introduction The interest in quantum dots (QDs) has recently increased due to the
novel properties these zero-dimensional structures exhibit as a consequence of spatial
confinement [1–6]. Different applications in electro-optical devices [2] make the knowl-
edge of the external electric field influence on the electronic structures important. In
the past, the Stark shift in QDs has been theoretically studied in cuboidal nanocrystals
[7] and in spherical ones [8–10]. The modern growing techniques have led to the so
called self-assembled quantum lens (SAQL) with nearly a lens shape geometry [11–15]
characterized by a spherical cap shape of height b and a circular cross section of radius
a with b < a. Their in-plane radii are typically about 15–100 nm and 3–4 nm height.
The present work is devoted to a non-perturbative approach to describe the electronic
states in a SAQL under an external electric field normal to its plane assuming a strong
confinement regime. Taking advantage of previously reported results [16], the Stark
effect in a QD with a lens shape is solved using the conformal transformation method,
mapping the effective mass Hamiltonian and the lens domain into an equivalent prob-
lem with a semi-spherical contour.

Stark Problem for a Quantum Lens The spatial domain of the SAQL will be denoted
by R3ða; bÞ and the boundary region by L3ða; bÞ. The electric field F is taken along the
z direction and normal to the SAQL circular cross section. Considering a single particle
of effective mass m* confined inside the dot region, the Schrödinger equation in spheri-
cal coordinates leads to the following dimensionless Dirichlet problem:

r2
r1Fðr1Þ þ xr1 cos q1Fðr1Þ þ k2Fðr1Þ ¼ 0 ; ð1Þ

with r1 2 R3ða; bÞ and the boundary condition Fðr1Þ ¼ 0 at r1 2 L3ða; bÞ. Here,
x ¼ F=F0, k2 ¼ E=E0, F0 ¼ E0=ðjejaÞ, and E0 ¼ �h2=ð2m*a2Þ. Due to the axial symmetry
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the solutions of Eq. (1) can be cast as

Fðr1; q1;fÞ ¼
f ðr1; q1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 sin q1

p eimfffiffiffiffiffiffi
2p

p ; m ¼ 0;�1; . . . ; ð2Þ

where r1; q1 are plane polar coordinates and f ðr1; q1Þ satisfies the equation

r2
r1;q1

f ðr1; q1Þ þ k2 �m2 � 1=4

r21 sin
2 q1

þ xr1 cos q1

 !
f ðr1; q1Þ ¼ 0 ð3Þ

with f ðr1; q1Þ ¼ 0 at ðr1; q1Þ 2 L2ða; bÞ.
The Dirichlet problem of Eq. (3) in the lens domain R2ða; bÞ does not allow explicit

analytical solutions. Using the conformal mapping reported in [16], Eq. (3) can be
mapped into

r2
r;qf

ðb;xÞðr; qÞ þ J bðr; qÞ k2ðb; xÞ �m2 � 1=4

X2
bðr; qÞ

þ xZbðr; qÞ
 !

f ðr; qÞ ¼ 0 ; ð4Þ

with boundary conditions f ða; qÞ ¼ 0 and f ðr;p=2Þ ¼ 0 and the new domain is a semi-
circle of radius a. The parameter b, the Jacobian J b, and the functions X 2

b and Zb are
the mathematical objects which contain the lens geometry information (see Ref. [16]).
Equation (4) reduces to Eq. (3) when the semi-spherical case, b=a ¼ 1, is recovered.
Hence, the function f ðb;xÞðr; qÞ can be obtained as an expansion in terms of the com-
plete set of orthonormal eigenfunctions ff ð0Þn;l;mðr; qÞg (solution of Eq. (4) for b=a ¼ 1 at
F ¼ 0), and given by

f ð0Þn;l;mðr; qÞ ¼
ffiffiffiffiffiffiffiffiffiffi
sin q

p
Pjmj
l ð cos qÞ Jlþ1=2ðmðlÞn rÞ ; l ¼ 1; 2; 3 . . . ;�l � m � l ; ð5Þ

where m
ðlÞ
n is the n-th zero of the Bessel function Jlþ1=2. The set (5) is a complete set of

orthonormal eigenfunctions for the space of solutions of Eq. (4). The boundary condi-
tion at q ¼ p=2 leads to the condition jl �mj ¼ odd. Thus,

f ðb;xÞN;m ðr; qÞ ¼
P1

i¼fn;lg
Cðb;xÞ

i ðN;mÞ f ð0Þi;m ðr; qÞ ; ð6Þ
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Fig. 1. Exited state energies EN;m of
a semi-spherical quantum dot as a
function of the electric field. The
energies at F ¼ 0 correspond to
states with angular momentum l ¼
3, 4 and 5. The energy EN;m and the
electric field F are given in units of
E0 and F0, respectively



where i is a certain order of quantum numbers (n, l) and N is a new quantum number.
Using Eq. (6) it is possible to show that Eq. (4) is reduced to

P1
i

Cðb;xÞ
i ðN;mÞ ðmðlÞn Þ2 dij þ ðm2 � 1=4Þ j

J b

X 2
b

� 1
r2 sin 2q

�����
����� i

* +(

� xhjjJ bZbjii � k2ðb; xÞhjjJ bjii
)

¼ 0 : ð7Þ

Equation (7) is a generalized eigenvalue problem of infinite order. k2 are the eigenval-
ues and CiðN;mÞ the eigensolutions. To evaluate numerically the eigenvalues k2, the
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Fig. 2. First 20 energy levels of SAQL as a function of the electric field, for (a) b=a ¼ 1 and (b)
b=a ¼ 0:613. In part (c) F=F0 ¼ 0 and in (d) F=F0 ¼ 400 are shown as a function of the ratio b=a.
The energy and the electric field are given in units of E0 and F0, respectively



first 100 zeros m
ðlÞ
n of Bessel functions are sorted for a given value of the quantum

number m. A 100 � 100 matrix is enough to obtain a good accuracy for the first 20
eigenvalues. In Fig. 1 the energy levels are plotted as a function of the electric field for
the first three degenerated states l = 3, 4, and 5 at F ¼ 0 in the semi-spherical case
ðb=a ¼ 1Þ. For F 6¼ 0 the degeneracy is broken as a consequence of the uniaxial direc-
tion introduced by the electric field upon the electron motion inside the semi-spherical
dot. As the degeneracy is broken for a given state N, the larger m values present the
higher energies, and the corresponding slope of the energy levels at F ¼ 0 is not zero,
showing a first order dependence on the electric field. These characteristics are quite
different from those obtained in a QD with spherical shape [10].
In Figs. 2(a) and (b) the dependence of the first 20 energy levels on the normalized

electric field are compared for two different QDs (b=a ¼ 1 and b=a ¼ 0:613). Figures
2(c) and (d) show the same eigenenergies as a function of the lens deformation b=a at
F=F0 ¼ 0 and 400, respectively. In all the cases the quantum number m is zero. It can be
seen that for a fixed value of the ratio b=a, an increase of the electric field produces a
decrease of the energy (Figs. 2(a) and (b)). Otherwise, when b=a takes lower values (for
a fixed F), the confinement effect will rise the energy levels to higher values, as should
be expected (Figs. 2(c) and (d)). The interaction between the levels in Fig. 2 is character-
ized by an anticrossing effect. Those states with the same quantum number m present
the same symmetry properties, while the energy levels with different quantum number
m have different spatial symmetry and can cross each other. Nevertheless, as the ratio
b=a of the QD takes smaller values the repulsion between levels is diminished. This
behavior is clearly shown in Fig. 2(b) where the dependence of the eigenenergies as a
function of the applied field follows almost a parallel law. The same can also be said in
Fig. 2(d) for the lower levels, where the stronger applied field (F=F0 ¼ 400) reduces the
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Fig. 3 (online colour). Probability density function of the level N ¼ 12, m ¼ 0, for two values of
the electric field F=F0 and b=a ratio



repulsion interaction between them. Due to the interplay between spatial confinement
and electric field in the SAQL, it is not possible to achieve a simple description for the
anticrossing effect. The question of a chaotic behavior at different regimes of QD defor-
mation and electric field strength being present or not is beyond the scope of the pre-
sent paper but will be subject to a future work.
In Fig. 3 the calculated probability density function, f ðb;xÞN;m ðr; qÞJ bðr; qÞ, of the level

N ¼ 12, m ¼ 0 is shown for two values of the electric field and the ratio b=a. It can be
seen the change of the nodal distribution due to the effect of the electric field on the
carrier. In the case of b=a ¼ 0:51 this change is not so strong due to the high confine-
ment in the QL domain, as it was already reported in Fig. 2(b). Our calculations point
out that in the case of ‘‘flatter” lens the confinement is so strong that the ground level
is not affected by the variation of the electric field.

Conclusions The Stark effect and the wavefunctions of a SAQL in an external elec-
tric field can be calculated by a generalized variational procedure using a conformal
transformation method. It permits to obtain explicitly analytical solutions for the wa-
vefunctions f ðb;xÞN;m ðr; qÞ given by the expression (6) where the eigenenergies and the
coefficients Ci of the problem are obtained by a direct diagonalization of the matrix
(7). The levels and their corresponding eigensolutions are studied as functions of lens
geometry and applied electric field. The most symmetric case of a semi-sphere at
b=a ¼ 1 has a constraint jl �mj ¼ odd and a degeneracy at F ¼ 0 of order l. These
degeneracies are broken by the electric field and lens deformation b=a < 1 keeping
the two fold degeneracy for �m (see Eqs. (2) and (4)). For a given N the lower
energy values correspond to lower values of the z-component quantum number. The
complex interplay of F and the lens geometry on carriers lead to a complicated elec-
tric field dependence of the energy and the wavefunctions in SAQLs. In the case of
weak confinement the electric field produces a strong repulsion between levels leading
to the anticrossing effect suitable to a complex regime. Finally, the calculation method
provides an explicit solution for the Stark effect in SAQLs that can be used to evalu-
ate electro-optical properties of the novel system as a function of its geometrical prop-
erties.
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