
Quantum lens in an external electric field: Anomalous
photoluminescence behavior

Arezky H. Rodrı́guez and C. Trallero-Ginera)

Department of Theoretical Physics, University of Havana, 10400 Havana, Cuba

~Received 10 September 2003; accepted 25 February 2004!

Electric field ~F! effects in self-assembled quantum dots with a lens geometry have been studied.
The optical selection rules and the origin of the anomalous behavior of the photoluminescence lines
with the applied field reported by Raymondet al. @Phys. Rev. B58, R13415~1998!# are analyzed
in terms of the interband oscillator strength and lens symmetry. Also, an explicit analytical
representation in the framework of the simple parabolic model for the electronic states as a function
of F and lens parameter are given. The excitonic effect has been considered in the strongly confined
regime when the excitonic Bohr radius is smaller than the dot dimensions. The influence of the lens
geometry on the quantum Stark effect shows an asymmetric energy shift in the electron-hole
transition. © 2004 American Institute of Physics.@DOI: 10.1063/1.1710706#

I. INTRODUCTION

Discrete energy levels due to carrier confinement in
semiconductor structures such as quantum wells, thin films,
layered heterojunctions, and nowadays quantum dots
~QD!,1,2 are of a great importance for the description of
transport phenomena, electrical, and optical properties of
these ‘‘man-made’’ systems. Quantum dot lasers are expected
to have properties better than those of conventional quantum
well lasers. The complete confinement in all three directions
leads to a totally discrete energy spectrum with a noticeable
increase in the density of states. Several works have been
devoted to study, both experimentally and theoretically, the
optical and electrical properties of quantum pyramids,3–9

quantum disks,10 spherical quantum dots,11–13 and quantum
lenses.14–21Also, experimental and theoretical studies when
an external electric field is present have been performed in
quantum wells,22 quantum disks,23 quantum pyramids,24

cuboidal nanocrystal,25 hemispherical quantum dots,26

spherical quantum dots,27–29 self-assembled quantum
dots,30–35 and with an arbitrary geometry.36 These studies
cover relevant topics such as electron and hole states, photo-
luminescence and photocurrent measurements.

Recently, an anomalous photoluminescence behavior has
been reported~see Ref. 34!. The photon emission lines of
InAs/GaAs self-assembled quantum dots~SAQDs! under an
external electric fieldF appear and disappear as the electric
field is tuned. Several lines are clearly observed at low field,
but they cannot be identified at higher fields. Moreover, the
photoluminescence peaks that are identified at certain posi-
tive ~negative! field, disappear for negative~positive! values.
This article is addressed to this particular effect. We show
that taking into account the full lens symmetry of the SAQD,
the anomalous behavior of the emission lines can be ex-
plained qualitatively in terms of the interplay between the
lens geometry and the mixing effect of the electron-hole
wave functions when the external electric field is varied. The

model also address the experimental observation reported in
Refs. 31 and 32, of the electron-hole optical transition ener-
gies for SAQDs as a function of the electric field applied
normal to the grown direction.

The article is organized as follows: Sec. II presents the
mathematical model to deal with the confined Stark effect
in a lens domain and Sec. III is devoted to the calculation of
the oscillator strength and to the comparison with some ex-
perimental results. Finally, some conclusions are given in
Sec. IV.

II. QUANTUM LENS IN AN ELECTRIC FIELD

A typical self-assembled quantum dot with lens symme-
try presents a circular cross section of radioa and heightb,
as shown in the inset of Fig. 1~a!. We consider an electron-
hole pair confined in the SAQD domain under an electric
field F parallel to its axial symmetry axis, taken as thez axis
(Fi ẑ). In the framework of the envelope function approxi-
mation, the exciton wave functions are taken as solutions of

F2
\2

2me*
¹e

22
\2

2mh*
¹h

22eF•~re82rh8!2
e2

kure82rh8u
G

3Ceh~re8 ,rh8!5~E2Eg!Ceh~re8 ,rh8!, ~1!

whereEg is the gap energy,k is the dielectric constant, and
mi* andr i8 ( i 5e,h) are the quasiparticle effective mass and
its radius vector, respectively. As a first approximation, in the
limit of strong spatial confinement (a,b!exciton Bohr ra-
dius aB), the electron-hole Coulomb interaction can be con-
sidered as a perturbation. Neglecting the electron-hole corre-
lation, the wave functionCeh(re8 ,rh8) is written in separable
form by a product of electron and hole wave functions
Ce(re8)Ch(rh8). According to the axial symmetry the one-
particle wave functionC i(r i8) in polar coordinates can be
cast as
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with m50,61,... being thez component of the orbital angu-
lar momentum and the functionf (r 8,u8) satisfies the equa-
tion

2
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2mi*
S ¹21

m221/4

r 82 sin2 u8D f ~r 8,u8!

1sgn~q!eFr8 cosu8 f ~r 8,u8!5E f~r 8,u8!, ~3!

where sgn(q)52e(e) for the electron~hole!. In polar coordi-
nates,f (r 8,u8) must fulfill the boundary condition at the lens
boundaryC:

f ~C!50. ~4!

The Schro¨dinger Eq.~3! for a bidimensional quantum
dot with lens-shape geometry in an electric field does not
allow to find an explicit analytical closed solution for the
wave functionsf (r 8,u8). The lens geometry and the electric
field break the spherical symmetry for which the square or-
bital angular momentuml and itsz-componentm are good
quantum numbers. Closed solutions of Eq.~3! can be ob-
tained if the lens domain is mapped into a semispherical one
of radiusa. This particular conformal mapping equation has

FIG. 1. First energy levelsEN,m /E0 of a quantum lens as a function of the dimensionless electric fieldF/F0 . The~N, m! labels the levels by increasing energy
for a given quantum numberm. Solid lines correspond to the exact calculation. Dots represent the solution up to second order perturbation theory.~a! b/a
51 semispherical quantum lens.~b! Lens domain withb/a50.91.~c! b/a50.51. Inset~a! shows the QD lens symmetry. Insets~b! and~c! show the deviation
for the ground state at high electric field between the exact results and perturbation theory.
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been reported in Ref. 20 and, according to Eq.~3! we obtain,
in reduced variables, an equivalent equation defined in a
semicircular domain given by

F2¹21~m221/4!
Jb

Xb
2 1sgn~q!sjJbZbG f ~b,j!~r ,u!

5sl~b,j!Jb f ~b,j!~r ,u!, ~5!

f ~1,u!50, f ~r ,p/2!50. ~6!

In the earlier equations51(mh* /me* ) for electron~hole!, j
5F/F0 , l5E/E0 , F05E0 /(ueua), E05\2/(2me* a2), b
5b/a, and the radiusa was taken as a unit of length. The
function Zb is given by

Zb~r ,u!5
2Ra/2 sin~af!

f 1
a 1 f 2

a 12Ra/2 cos~af!
~7!

and functionsJb(r ,u), xb
2(r ,u), f 6 , R, a, and f are de-

fined in Ref. 20. It is worth to notice that Eq.~5! reduces to
the semicircular case ifb/a51 with Jb5151, xb51

5r sinu andZb515r cosu. At zero electric field (j50) and
b/a51 the solutions of Eq.~5! are given by

f n,l ,m
~0! ~r ,u!5AsinuPl

umu~cosu!Jl 11/2~mn,l r !, ~8!

with l 51,2,...,2 l<m< l , and mn,l is the nth zero of the
Bessel functionJl 11/2. Since we have performed a confor-
mal transformation, the Hilbert space of Eq.~3! at F50 and
b/a51 is the same as that defined by Eq.~5! with FÞ0 and
b/aÞ1. Hence, the set of functions~8! is a complete set of
orthonormal eigenfunctions for the space of solutions deter-
mined by Eqs.~5! and ~6!. The boundary conditions~6! im-
pose the restriction thatu l 2mu5odd number. Therefore, we
can search the wave functionf (b,j), solution of Eq.~3!, for
each Hilbert subspace defined by the quantum numberm, as
a linear combination of the functions~8!:

f N,m
~b,j!~r ,u!5(

n,l

`

Cn,l
~b,j!~N,m! f n,l ,m

~0! ~r ,u!. ~9!

Here,N enumerates, for a given values ofm, the levels by
increasing value of the energyEN,m . Taking Eq.~9! in Eq.
~5! leads to an infinite generalized eigenvalue problem for
lN,m(b,j) with eigenfunctions$Cn,l

(b,j)(N,m)% for a given
value of quantum numberm. The corresponding matrix ele-
ments have to be evaluated numerically and standard nu-
merical diagonalization techniques have been used to solve
the system of equations. The electric field and quantum dot
symmetry impose restrictive conditions on the energy levels,
the carrier polarization, and the optical oscillator strength.
These facts lead to a mixing of the wave functions~9! that
should provide peculiar behaviors of the optical transitions.

A. Semispherical quantum lens

Let us first analyze the limitb/a→1. In the case of a
spherical quantum dot the, states present (2l 11)-fold de-
generacy. As the electric field is turned on the degeneracy is
removed and thel 85 l 61 states withDm50 are mixed.27

However, if the domain is reduced to a semispherical one,
the solutions are restricted to those states fulfilling the con-
dition u l 2mu5odd number with a degeneracy equal tol.

The field keeps invariant the Hilbert subspaces for each
value of umu, remaining the twofold (6m) degeneracy.

In Fig. 1~a! the first exact calculated electron energies
EN,m , for a semispherical quantum dot as a function of the
dimensionless electric fieldF/F0 are plotted~solid lines!.
The hole energies can be obtained by scaling the factorF/F0

by 2(me* /mh* )(F/F0) and the factor E/E0 by
(me* /mh* )E/E0 . At low electric fields an explicit expression
can be derived for the carrier energy by applying perturba-
tion theory in terms of the well known semispherical wave
functionsun, l, m&. Due to the constraintu l 2mu5odd num-
ber, the ground stateE1,0 at the semisphere corresponds to
excited statel 51, m50 in the spherical case.27 It can be
seen from Fig. 1~a! that the energy atF'0 has a linear
behavior with the applied electric field. At stronger fields the
energy shifts are found to be proportional toF2 in the lowest
order of approximation. A good correspondence is observed
between exact diagonalization and second order perturbation
calculations for a certain range of the dimensionless electric
field F/F0 . Our calculations show that, for an electron, the
quadratic term obtained by the perturbation theory is two
orders of magnitude lower than the linear term for a wide
range of electric fields, while the energy levels have a strong
quasistraight line behavior. Nevertheless, for hole states, and
due to their mass value, a nonperturbative approach becomes
necessary to describe the field effect on the quantum lens.

B. Nonsemispherical quantum lens

As the semispherical domain is deformed into a lens
domain with circular cross section, the application of the
electric field leads qualitatively to the same results, from the
point of view of their symmetry properties, that in the semi-
spherical case. Nevertheless, there is a strong concurrence
between the lens deformation~confinement effect! and the
energy provided by the external field. In Figs. 1~b! and 1~c!
the electronic levelsEN,m are shown as a function of the
dimensionless electric fieldF/F0 for two types of quantum
lensb/a50.91@Fig. 1~b!# and 0.51@Fig. 1~c!# representing a
weak and strong lens confinement domain, respectively.
Moreover, a perturbation theory calculation in terms of the
applied electric field can be performed, but now theeigen-
functions fN,m

(b,j50) and eigenvalueslN,m(b)5E(b,j50)/E0

correspond to those defined in alens domain withb/a,1.
These wave functions have been previously reported in Ref.
35. For the sake of comparison, the calculated dimensionless
energy values, following perturbation theory, are represented
by dots in Figs. 1~b! and 1~c!. We observe a good correspon-
dence between exact and perturbation calculations obtained
for both values of the lens domain here considered. Figures
1~b! and 1~c! show that the effect of the field on the energy
decreases asb/a decreases, due to the increasing effect of
the confinement, as it should be expected.

The probability density function~PDF! for the electron
ground state (N51,m50) and heavy hole states (N51, 2,
and 3 withm50) for an InAs/GaAs SAQD with a lens do-
main is presented in Fig. 2 for three values of the applied
electric field. It can be seen the stronger mobility of the hole
with respect to the electron. Also, it is clear that forF.0
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(F,0) the mean value of the heavy hole,^ f Nh ,m
(b,j) uzu f Nh ,m

(b,j) &,

is located above~below! the electron onê f Ne ,m
(b,j) uzu f Ne ,m

(b,j) &,
and a nonsymmetric displacement with respect toF50 is
expected~see Fig. 3!. Moreover, from the plot of the PDF we
can see that the asymmetric behavior with respect the field
(F56300 kV/cm) comes directly from the lens geometry.

Another important magnitude for the electro-optical
properties is the carrier polarization, which is proportional to
its z-component average. According to Eq.~9!, and for a
given state~N, m!, this magnitude is given as follows:

^ f N,m
~b,j!uz8u f N,m

~b,j!&5a (
n,l ;n8,l 8

Cn,l
~b,j!~N,m!Cn8,l 8

~b,j!
~N,m!

3^ f n,l ,m
~0! uJbZbu f n8,l 8,m

~0! &. ~10!

Figure 3 shows the behavior of^zi&/a @ i 5electron~e!, heavy
~hh!, and light~lh! holes# as a function of the dimensionless
parameterF/F0 for two quantum lens domains:~a! b/a
50.91 and~b! b/a50.51. The states (N51,m50) and (N
52,m50) have been considered for the calculation and the
semiconductor parameters of Ref. 10 were used. From this
figure, it can be seen that atF50 the polarization is different
from zero (̂ zi&.0). This is a direct consequence of the lens
symmetry, independent of the chosen Hamiltonian model,
while the result̂ ze(F50)&5^zh(F50)& is solely due to the
assumed boundary conditions~4!. As expected, in the frame-
work of a homogeneous Hamiltonian mode, an opposite rela-
tive displacement of electrons and holes occurs along the
direction of applied field. Also, the heavy hole quasiparticle
is strongly affected by electric fields, reaching its asymptotic
value, that is ^z&/a→b/a (^z&/a→0) for F→` (F→
2`). From Figs. 3~a! and 3~b! it can be seen that asb/a
decreases the polarization is less influenced by the field, and
in the strong confinement regime lower values of^z& are
reached.

C. Exciton correction

The Coulomb interaction can be taken as a perturbation
if the strong confinement regime is considered. Thus, in the
first order perturbation theory calculation the exciton correc-
tion can be cast as

DENe ,me

Nh ,mh

E0
5LE uCNe ,me

~re8!u2uCNh ,mh
~rh8!u2

ure82rh8u
dre8drh8 ,

~11!

where r i8 is given in units ofa, the integrals overr i8 are
performed in the quantum lens domain~see the Appendix!,
andL52me* e2a/(k\2) measures the ratio between the Cou-
lomb and the spatial confined energies. In our calculation,
the parameterL must be less than one. Figure 4 shows the
excitonic binding energy as a function of the electric field. In

FIG. 2. Probability density function atF52300, 0, and 300 kV/cm for the
(Ne51,m50) electron state and (Nh51,m50), (Nh52,m50), (Nh

53,m50) heavy hole states. For the calculation a ratio ofmh* /me* 516.38
was used.

FIG. 3. Carrier polarization̂z& in units ofa as a function of the dimension-
less electric fieldF/F0 for the electrons~e!, light ~lh!, and heavy~hh!, holes.
~a! Corresponds to a lens domain withb/a50.91.~b! b/a50.51. Solid lines
represent the ground state (N51,m50) and dotted lines to (N52,m50)
state.

6195J. Appl. Phys., Vol. 95, No. 11, 1 June 2004 A. H. Rodrı́guez and C. Trallero-Giner

Downloaded 01 Jun 2004 to 200.136.245.237. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



the calculation, the valuesa520 nm, me* 50.0152me , mh*
50.249me , andk510 were used. From this figure it can be
seen that the Coulomb interaction represents a small correc-
tion to the total electron-hole energy andDE will diminish as
b/a decreases. Moreover, the influence of the electric field
on the binding energy is practically negligible and can be
considered as a constant. These facts are clearly understood
due to the interplay between the spatial geometry interaction
and the Coulomb and electric field ones.

III. OPTICAL MATRIX ELEMENT

In order to understand the origin of the photoemission
lines as a function ofF, we must calculate the interband
optical matrix elements between different electron-hole pair
states. In a first approach, and neglecting the Coulomb inter-
action, the interband optical matrix element is proportional to
the oscillator strength of the electron-hole pair wave function
CNe ,me ;Nh ,mh

(re8 ,rh8), given by

d~b,j!~Ne ,Nh ;m!5U E CNe ,Nh ,m~r 8,r 8!dr 8U2

5U (
n,l ;n8 l 8

Cn,l
~b,j!~Ne ,m!Cn8,l 8

~b,j!
~Nh ,m!

3^ f n,l ,m
~0! uJbu f n8,l 8,m

~0! &U2

. ~12!

In Fig. 5 it is shown the behavior of the oscillator strength
d(b,j) for several electron-heavy hole states. The oscillator
strength for the light hole behaves like a zoom of the heavy
hole case nearF50, and it is not shown in the figures. Due
to the infinite barriers model used, the oscillator strength is
diagonal atF50 and transitions between electrons and holes
with different quantum numbersN, m are not allowed. The

electric field breaks this selection rule and transitions be-
tween states with different quantum numbers are allowed,
provoking nondiagonal oscillator strengths different from
zero. According to the dependence of the oscillator strengths
d(b,j) on the electric field forb/a50.91 @Fig. 5~a!#, those
transitions fulfilling the selection ruleDm5me2mh50
show a strong anisotropy with respect toF50. This behavior
is due to the lens geometry, i.e., the electron/hole motion in
the z direction is different with respect to the positive or
negative direction of the field. Another interesting feature in
Fig. 5 is the appearance and disappearance of electron-hole
transitions as the electric field is tuned. For example, the
transition 2@heavy hole state~2,0! to electron state~1,0!# at
F/F0515 shows a maximum in the oscillator strength, while
at negative field this emission line has practically zero inten-
sity. The opposite can be argued for the oscillator strength 4

FIG. 4. Exciton binding energy of the ground stateDE1,0
1,0 as a function of

the electric field for some InAs/GaAs quantum lens:b/a50.91, 0.70, 0.51,
and 0.34.

FIG. 5. Oscillator strengthd(b,j)(Ne51,Nh ;m50) as function of the elec-
tric field for five electron-hole transitions and two ratios ofb/a. ~a! b/a
50.91. ~b! b/a50.51. In the graphics the labels 1–5 represent the transi-
tions from the heavy hole statesNh51, 2, 3, 4, and 5 to theNe51 electron
ground state, respectively.

6196 J. Appl. Phys., Vol. 95, No. 11, 1 June 2004 A. H. Rodrı́guez and C. Trallero-Giner

Downloaded 01 Jun 2004 to 200.136.245.237. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



@transition from the heavy hole state~4,0! to electron state
~1,0!#, where the stronger maximum is located at negative
field and a very weak photoluminescence lines are predicted
at F/F0.0. A similar symmetric behavior of the emission
lines with respect the applied electric field is observed for the
transitions 1, 3, and 5. This nonmonotonic dependence of the
photoluminescence lines onF is explained by the admixture
of states with different orbital quantum numberl induced by
the electric field and the lens geometry. The field breaks the
spatial parity of the final functionf (b,j) in such a way that all
componentsCn,l

(b,j) in Eq. ~9! contribute to the new state. At
F50 and due to the restrictionu l 2mu5odd number, the
optical transition^ f Ne51,0

(b,j50)u f Nh,0
(b,j50)&50 for Nh52,3,... The

field couples states with different angular momentuml and
the coefficientsCn,l

(b,j) for l 5even number are different from
zero, allowing optical transitions between heavy and electron
wave functions with different quantum numberN and m
50. Moreover, following Eqs.~5! and~9!, the weightsCn,l

(b,j)

are nonsymmetric with respect to the direction ofF. This
behavior is clearly observed in theEN,m energy dispersion
shown in Fig. 1, providing an evidence of the strong admix-
ture in the wave functionsf N,0

(b,j) . Therefore, anomalous
variations of the oscillator strength and of in the photolumi-
nescence spectra, as a function of the electric field, are ex-
pected.

Regarding to excitonic effects, it is necessary to point
out that within the strong confinement limit (a,b!aB), the
behavior of the oscillator strengthd(b,j)(Ne51,Nh ;m50)
as a function of the electric field and the quantum lens ge-
ometry parameterb/a do not change at all. The main char-
acteristics detailed in Fig. 5, and those reported in Ref. 34
are linked to the spatial symmetry properties. The electron-
hole attractive correlation is responsible for a small increase
of that particular transition~a more bright line in the photo-
luminescence spectrum!, but it will not introduce a different
spectral intensity distribution as a function ofF. This spectral
distribution is determined by the fact that the lens shape
geometry and the electric field reduce the spherical symme-
try of the Coulomb potential, leading to a specific admixture
of states for the optical transitions.

It is useful to analyze, qualitatively and quantitative, the
results provided by the simple electronic model here consid-
ered, with the experimental observations. Electron-hole opti-
cal transitions energies for SAQDs as a function of the field
normal to the grown direction have been reported in Refs.
31, 32, 34, and 37, showing a clear asymmetric Stark shift.
In order to fit the obtained experimental data, several models
have been proposed. For example, in Ref. 34 effective po-
tentials for electron and holes were assumed, while in Refs.
31 and 32 an effective pyramidal geometry~severely trun-
cated! is considered. Nevertheless, in our opinion, there is
still some uncertainty about the fundamental parameters
which lead to the mentioned asymmetric Stark shift. Let us
first analyze qualitatively the influence of the lens domain on
the Stark effect. In our case of a SAQD with lens geometry,
the electronic energy shows an asymmetric Stark shift due to
the linear dependence onF ~see Fig. 1!. Hence, the allowed
optical electron-hole transition energy has a permanent di-

pole proportional toPd5^ i euJbZbu i e&2^ i huJbZbu i h&. In
general, any theoretical formalism which provides different
probability density distributions for electrons and holes will
lead to a permanent nonzero intrinsic dipole in the quantum
dot. This can be achieved including finite barriers potentials,
using any extendedk•p Hamiltonian model or taking into
consideration different strain distributions for electrons and
holes. The fundamental issue is to get a value forPd in
agreement with the experimental value. The model presented
in Sec. II, which considers infinite barriers and neglects the
~not well known! strain distribution, can reproduce the order
of magnitude and the curvature of the measured transition
energy with respect to the applied electric field. Figure 6
shows the dependence of the ground state transition energy
onF, measured by photocurrent technique,31,32for a QD with
a base size of 18 nm in diameter and height of 8.5 nm. Here
we compare several theoretical fittings, according to the
model of Sec. II, where the solid line represents the excitonic
transition and the dotted lines the same result using pertur-
bation theory without excitonic effect. In the calculation the
best fittings have been obtained with the set of valuesme*
50.015me , mh* 50.249me , and Egap(T5200 K)
50.348 eV.38 The wave function penetration into adjacent
environment is considered by a fitting procedure to repro-
duce the data reported in Ref. 31. In our case, we obtain and
effective radiusaeff58.5 nm. In some extent, the values of
the electron and holes masses used include phenomenologi-
cally the strain field distribution on the band structure.4,5 The
excitonic correction has been calculated according to Eq.
~11!. The resulting binding energy calculation for the ground

FIG. 6. Exciton ground state transition energy as a function of the electric
field F for a QD with lens geometry of a radiusa59 nm and heightb
58.5 nm. Dots represent the data from Ref. 31, solid line is the exact
calculation including excitonic effect and dotted lines are the Rayleight–
Schrödinger second order perturbation theory. A fieldFi5274 kV/cm has
been introduced in order to shift rigidly the theoretical calculation to com-
pare with the experimental data. Dashed lines correspond to the exact cal-
culation withFi50 kV/cm.
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state DE(exc) at F50 is equal to 24.9 meV andDE(exc)

524.6, 23.8 meV atF56290 kV/cm. When a lens geom-
etry is assumed, the optical ground state transition energy
calculation presents an asymmetric Stark shift with respect to
F50, as can be seen in the Fig. 6. This asymmetry comes
out from the lens geometry and the difference between the
electron and hole masses. Since we are interested in analyze
the influence of the lens geometry on the Stark effect, a
built-in electric field Fi5274 kV/cm was addedad hoc,
shifting rigidly the theoretical calculations. It can be seen
that the principal features, as the order of magnitude, curva-
ture, and asymmetry, are well reproduced by the quantum
lens model. Concerning the internal fieldFi , we should
mention that its origin is very controversial. In Ref. 34, the
value ofFi is mainly due to a strong increase in the electric
confinement energy, as the external field forces the electron
towards the apex of the dot. In Ref. 31, the internal field is
obtained by a graded Ga composition in the dot and the
correct direction of the permanent dipole is reached by a
severe truncation of the QD, modeled as a pyramid. It is
important to recall that the presence of an internal field has
been reported or wurtzite CdSe spherical QDs.2 This work
propose the possibility of facets on the QD surface and/or
surface traps, supporting the departure from the symmetrical
shapes.

Using the same set of parameters employed in the Fig. 6,
we compare in Fig. 7~a! the oscillator strength dependence
on F for the ground state~solid line! with the experimental
observations~dots!.31 The observed maximum occurs atF
52140 kV/cm, while in the calculation the maximum is
located atF5274 kV/cm, in correspondence with the fit-
tings shown in Fig. 6. Nevertheless, we can see good agree-
ment between the experimental results and the calculations.
Accordingly, the behavior of the first excited state as a func-
tion of the applied electric field is shown in Fig. 6~b!. The
theoretical calculations correspond to the (Ne51,m
50)⇒(Nh52,m50) and (Ne51,m50)⇒(Nh53,m50)
excitonic transitions and are represented by solid lines while
the experimental data are depicted by dots. The obtained
results indicate that the first observed excited state should be
a combination of several optical transitions. In panel 6~c!, we
compare our results for the ground state transition energy for
a QD of radiusa57.5 nm, b53.5 nm, and ratio ofb/a
50.47 with the data reported in Ref. 31. In this case, the
strong confinement provokes a larger penetration of electrons
and holes into the surrounding medium. In order to take into
account this effect we introduce an effective quantum lens of
radius aeff515.16 nm keeping the same ratiob/a50.47.
This procedure had been used in the past to simulate the
finite potential barrier model,22,39,40and represents an alter-
native to include the finite barrier band offset avoiding its
mathematical complications. In the present calculation the
values ofme* andmh* are the same employed in the fittings
of Fig. 6 but now a built-in internal fieldFi5280 kV/cm
was assumed. Also, in the figure the second order perturba-
tion approach~dotted lines! is shown, evidencing the good
correspondence with the exact calculation.

IV. CONCLUSIONS

We have shown that self-assembled quantum dots with
lens geometry lead to peculiar oscillator strength distribution
as a function ofF. The mixing of different electronic states
due to the interplay between lens deformation and the field,
explains the appearance and disappearance of the photolumi-
nescence lines as the electric field is tuned. Also it is shown
that the lens symmetry conduces to an asymmetric Stark

FIG. 7. ~a! Ground state oscillator strength as function of the electric field
for the sample of Fig. 6.~b! First measured exited state energy according to
Ref. 31. In the calculation the set of parameters of Fig. 6 has been em-
ployed. Solid lines represent calculation for the 1e22h and 1e23h exci-
tonic states.~c! Ground state transition energy as a function of the electric
field F for an InAs/GaAs quantum lens geometry of a radioa57.5 nm and
b/a50.47. In the calculation and effective radius ofaeff515.16 nm has been
used. In all graphics the experimental data are represented by dots, the exact
calculation by solid lines, and dotted lines are the Rayleight–Schro¨dinger
second order perturbation theory.
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shift. The main experimental features observed of the quan-
tum Stark effect in self-organized quantum dots can be ex-
plained by assuming a lens geometry.

Finally, we have reported an analytical representation for
the electronic states of the dot as function of the lens geom-
etry and the electric field normal to the dot plane. We have
not considered the stress and the Ga distribution in the dot.
However, the reported representation for the eigensolutions
could provide a basis to incorporate such effects and to go
more deeply into the evolution of the optical properties on
the external applied fields.
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APPENDIX

Using the identity41

1

ure82rh8u
54p (

p50

`

(
s52p

s5p
1

2p11

r ,8
p

r .8
p11

3Yp,s* ~ue8 ,fe8!Yp,s~uh8 ,fh8! ~A1!

and Eq.~2! we obtain

DENe ,me

Nh ,mh52E0L (
p50

`
I p~b,j!

2p11
, ~A2!

where

I p~b,j!5 (
i , j ,i 8, j 8

`

Ci
~b,j!~Ne ,me!Cj

~b,j!~Nh ,mh!s

3Ci 8
~b,j!

~Ne ,me!Cj 8
~b,j!

~Nh ,mh!Ii , j ,i 8, j 8~p!

~A3!

and

Ii , j ,i 8, j 8~p!5E dre8drh8 f i ,me

~0! ~r e8 ,ue8! f j ,mh

~0! ~r h8 ,uh8!

3
r ,8

p

r .8
p11 Pp~cosue8!Pp~cosuh8!

3 f i 8,me

~0!
~r e8 ,ue8! f j 8,mh

~0!
~r h8 ,uh8!. ~A4!

In the earlier equationi labels the set of quantum number~n,
l! and the variablesr 8, u8 are function ofr, u coordinates
according to the inverse of the mapping transformation be-
tween the lens geometry and the semispherical domain.20

The integralsI is over the two-dimensional lens domain and
were performed numerically following a Monte Carlo proce-
dure. These integrals solely depend on lens deformationb/a
and are independent on the electric field.
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