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We present a model to find analytically the electronic states in self-assembled quantum dots with a truncated
spherical cagg“lens” ) geometry. A conformal analytical image is designed to map the quantum dot boundary
into a dot with semispherical shape. The Hamiltonian for a carrier confined in the quantum lens is correspond-
ingly mapped into an equivalent operator and its eigenvalues and eigenfunctions for the corresponding Dirich-
let problem are analyzed. A modified Rayleigh-Sdclinger perturbation theory is presented to obtain analyti-
cal expressions for the energy levels and wave functions as a function of the spherical cap hejhadius
a of the circular cross section. Calculations for a hard wall confinement potential are presented, and the effect
of decreasing symmetry on the energy values and eigenfunctions of the lens-shape quantum dot is studied. As
the degeneracies of a semicircular geometry are brokeln=fa, our perturbation approach allows tracking of
the split states. Energy states and electronic wave functionsmvit® present the most pronounced influence
on the reduction of the lens height. The method and expressions presented here can be straightforwardly
extended to deal with more general Hamiltonians, including strains and valence-band coupling effects in Group
II-V and Group II-VI self-assembled quantum dots.
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. INTRODUCTION extremely narrow luminescence peaksisolated dots®*3

Confinement effects have also been shown to appear in mag-

Quantum dots obtained by interrupted growth in strainechetocapacitance and infrared absorption experiments by sev-
semiconductor interfaces are currently under intense studgral groups*~1’Clear evidence of electronic shell states and
by many experimental and theoretical grodpghese “self- their different degeneracies has been reported recttelyd
assembled” quantum dots are mostly dislocation free, coherapplications such as storage of photoluminescence signals
ent islands of deposited material on the surface of a differenivas demonstrated recently in gate-activated “optical
semiconductor. The lattice mismatch from one semiconducmemories.®
tor to the other forces the segregation of material whenever Simplifying the symmetry of the lens as a two-
the epitaxial growth exceeds a critical layer thickness, resultdimensional harmonic oscillator has been suggested to char-
ing in the growth of these so-called Stranski-Krastanovacterize the level structure for charge carriers in the dots, and
islands?> Deposition of material past a critical thickness, this has proven useful in the interpretation of experiméhts.
which depends on the two materials used, results in largdlevertheless, as we will show here, a lens geometry has
arrays of small islands with a rather narrow size distributionquite a different level structure and wave functions with
(with size variations well under 10p6and typically arranged subtle symmetries, which might be seen in experiments. For
randomly on the plandalthough avoiding overlapping is- example, we find that as the height of the cap or lens de-
lands, for the most part More recently, some groups are creases, there is a larger shift of the wave function towards
working at producing in-plane ordering of islands following the plane of the len§in comparison with the situation in a
different approaches, including “nucleation site engineer-semispherical geometry This shift becomes stronger for
ing” to favor certain locations for self-assembled dot “flatter” lenses, and may even give rise to deconfinement of
growth? These self-assembled quantum dots have, for théhe state towards the substrate, for finite confinement poten-
most part, a large area-to-height aspect ratio. In the case til, changing significantly the oscillator strength of electron-
InAs islands grown on a GaAs surface, the in-plane diamhole transitions, for exampfé. However, even before that
eters are typically less than 30 nm, while their heights areccurs, the smaller height lens geometries exhibit a different
below 10 nnt Different techniques used to study the shapelevel structure than the harmonic oscillator, as we show be-
and size of these dots suggest, although not without somlew. This structure may give rise to different Pauli blocking
controversy, that the InGa/GaAs self-assembled quanturaffects and transition rules, topics which are the subject of
dots are lens shapéd® characterized by a spherical cap interest in recent experimerfis.
shape with circular cross section. Upon optical or other In this paper we rigorously show that a complete set of
mechanisms of carrier injection, both electrons or holes havevave functions can be generated with the correct lens sym-
bound well-confined states inside these dots. metry, and used to describe the physical properties given by

In fact, optical experiments on self-assembled dots demthe differential equation of interest. For the sake of simplic-
onstrate that these structures provide strong carrier confinéy, we have applied our calculation here to the single-
ment, as decreasing dot size produces strong blueshift of thgarticle Schrdinger equation. The incorporation of nonpara-
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@ z m*, the eigenvalue problem for a particle confined in the

lens is described by the operator
Ls(a,b)

2

Rs(@b) A=——V

p— 2, reRg(ab), (1)

obeying the Dirichlet boundary conditions=0 for r

® ® I ® cL4(a,b). Ls(a,b) is the boundary of th&,(a,b) domain.
¢w=JF(:rz)§b The operator(1) presents axial symmetry and all functions
Ly(ab) b defined onR3(a,b) have the propertyp(¢)= ¢(o+2),
a u

N

whereg is the axial angle. Hence, the solution of Ef). can

& R be written as

73 x Y

—Q _ dme
y(n)="1(p) ; m=0,+1*2,..., 2
FIG. 1. (a) Lens cap of heighb and radiusa. (b) Conformal V2

mapping from2 to V. wherep is a two-dimensional2D) vector. Correspondingly,

) ) ] ) ) ) _ the operaton(1) is transformed into an eigenvalue problem
bolic band dispersion or many-particle interactions

is . =
straightforward(if only a bit cumbersome Although it is for the functionf(p) = v sin6%(p),
well known that strain effects are determinant in the descrip-

tion level structure of realistic self-assembled quantum m2—1/4
dots?® the scope of the present paper is focused on the sim- Vot| ko= —— f(p)=0; peRy(a,b), (3
pler single-particle Schabinger equation. This provides the p?sirto

simplest proof of the conformal analytical transformation ap-,nere k2= 2m* E/#2
0 1

. . _ ! E is the energy of the eigenfunction
proach, mapping the dot lens geometry into a sem|spher|cq;l(p)’ 9 is the polar angle,Vf, is expressed in circular coor-

s o &N %naies, andR,(a.) 1= the 2D comain wih bouncry
Y PP 9 L,(a,b) in the p space shown in Fig.(lh). The Hilbert space

these structures, it also provides an interesting example of Bhere the operatofd) is defined corresponds to the set of

generalization of perturbation theory for the conformal- . . o _
mapped differential operator arising from the Sclinger Lunnftl?gsb;(p) € Ry(a,b) with boundary conditiorf (p) =0
2\, .

equation in the material. Since the conformal transformation
used to map the lens into the semispherical geometry is non-
trivial, the resulting differential equation in the transformed
space reflects that complexity. Fortunately, our perturbation For the case ob=a, the lens shape of Fig.(d has
approach is robust for the identified small parameter of th&emispherical symmetry. Hence, the Dirichlet problem in Eq.
problem, as we will show. (3) reduces to the condition§a, #)=0, andf(p,7/2)=0.

The remainder of the paper is structured as follows: inThe set{f;} of eigenfunctions of Eq(3) on theR, domain
Sec. Il we introduce the problem of the spherical cap geomforms an orthonormal basis with functions, which in polar
etry, its semispherical limit, and the conformal map whichcoordinates are given by products of the associate Legendre
connects the two shapes. In that section, we also describe tiy@lynomials and Bessel functions,
perturbation approach needed to carry out the solution of the
appropriately mapped Schtimger operator, and explore the ol cosd) J (u0a)p]
orthonormalization conditions of the basis used in the de- O, 0)= Jsing i ( 1+ 12l (mp’l@)p

A. Semispherical quantum dot

scription of the general problem. In Sec. Il we present some Nim Ng @
examples of the eigenstates for varying lens size, and analyze, i
b 9 ying yW|th [=0,1,2 ..., and thecondition —I=m=I. The nor-

their angular and radial distribution functions. Section IV lizati | di
presents some discussions and conclusions, while the appeR@lization constantsl; ,, andNg are as usual given by
dix contains details of the expansion described in Sec. Il.

1 (I+|m)! a 0
Il. DIRICHLET PROBLEM FOR A QUANTUM LENS: Nim= mw: NB:E‘JHl/Z(Mn)r 5

CONFORMAL MAPPING

The shape of the quantum lens in reapace is shown in W?p?r?‘]q is the derivative of(pt)he Bessel functialy, and
Fig. 1(a). Rs(a,b) denotes the domain of the lens with #n IS the nth zeroJy .1 /5(uy")=0. The eigenvalues are
boundary inr space given by a spherical cap of heiglgnd  given byE,, | =ﬁ2(,uf1'))2/(2m* a?), and the boundary condi-
circular cross section with radiua. Assuming a carrier tion f(©©(p,6=/2)=0 restricts the values of the quantum
Hamiltonian model with isotropic band and effective massnumbersl and m to fulfill the condition || —m|=o0dd Ac-
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cording to this condition, the degeneracy of steﬁ% fora  the operator in Eq(7). Hence, the general solutidh(u,v)
given energykE, | is equal tol and the ground state corre- for a givenmis given in term of the se{tfﬁfﬂ} such that
sponds td=1, m=0, andn=1.

B. Quantum lens F=E| Cni FQU(p), 9
n,

The quantum dot with lens shape corresponds to the more ) o

general case whem<a. Here, we need to fulfill Eq3) with ~ Wherep=(p, 6) is here the parametrization afiv), and the

the Dirichlet condition over the boundary,(a,b). The functions_fﬁ,_?,) are restricted to the conditio—m|=odd.

wave functions°) given by Eq.(4) are not a solution for the The coefficient<C,, | have to be determined to satisfy the full

general case, because the problem has no longer the semicdRerator and different approaches can be employed to ac-

cular symmetry ind. The energy number and angular mo- compllsh. this (e.g., matrix d@gonallzat[on technlqued\ _

mentuml are clearly no longer good quantum numbers Wherperturbqnon procedU(e, allowlng to obtain the eigenfunctions

b+a and the m degeneracy is broken. To obtain an analytif and eigenvaluek?, is described in Sec. Il D below.

cal solution of the problent3) it is convenient to make a

conformal mapping to the circular cap with domé&tp(a,a) C. Orthogonality and completeness

ar_u_ll boundary ,(a,a). The mapping_enables us to solv_e the Equation(7) can be cast in operator form as

Dirichlet problem for the operator given by E@®) in a Hil-

bert space where an orthonormal bafig is known. We

transform the quantum lens domain and boundary into a dot KF =7 k°F, (10)

with semispherical shape, so that the circular cap defined by . 5

the domainZ=x—iz e R,(a,b), transforms into the semicir- WhereK involves the Laplace operator; V{, ), and the

cular domainV=u—iv € Ry(a,a). This is accomplished by ~term (m?—1/4)7,/X%(u,v). Equation(10) is an eigenvalue

the transformatiofisee Fig. 1b)] problem for the dimensionless energk%gm), whereN is a
generic label for the different eigenstafeg of Eq. (10). Let
us now suppose th& andM correspond to different eigen-

2a w4 values of Eq.(10). From the above equation it follows that

—a, =V
1+[(a— 2)/(a+ 2)]" ™ arctarib/a)
© FlRFy— FNR* P = 7,04 G FEFy. (A

In the complex plan@V, we have the parameter equations: Making the intearation oven(u.v) in the R.(a.a) domain
u=psing, v=p cosf, 0<p<a, and 0<#<m/2. The eigen- ob?ain that g ep(u.v) 2(2.3) ’
value problem(3) is thus transformed by this conformal

mapping into the problem

W(Z)=

—FN Ve PN FVE o Fild?
fRz(a’a)[ MY (uv)FN NV (u,v) mldp

5 , m*-1/4
V(U,U)F(uvv)+u7a(uyv) k _2— F(U,U):O,
X%(uv) =(k3—Kk2) FrFnT «Pp. (12)
Ry(a,a)
(U) eR,(a,a), 7) Integration by parts gives us
with the boundary condition,
(kﬁ_kﬁﬁ)f T FuFndp=(F\VF}
Ry(a,a)
F(U,0)](uv)eL (a2 =0- (8)

_FKAVFN)l(u,v)ELZ(a,a) ’ (13)

. _ 2 .
The functions J,(u,v)=|dZ/dV® (the Jacobian and which due to the boundary conditidB), it is reduced to

ja/él’i are given in Appendix A, and are mathematical ob-
jects that contain the information of the lens geometry,
where the subscript is given in Eq.(6). It should be noted
thate=1, sinceb=a, and fora=1 the Jacobiai, reduces

to 1, while 7, /X reduces to 1/2=1/(p sin ).

The Hilbert space on which the operat@ is defined ForN#M, condition(14) represents the orthogonality prop-
must fulfill the Dirichlet boundary conditions on a semicir- erty of the eigenfunction sgty}, where J, is clearly the
cular domain, as indicated in E¢B). Thus, the set of func- weighting factorof the eigenproblen(7). Moreover, the op-
tions that fulfill the conditions for the Hilbert space defined erator K is Hermitian, ensuring that the solution of the
through Eq.(8) are the functionsfff”,’ given in Eq.(4), and  present problem is described by means of a complete ortho-
represent a complete set of orthonormal eigenfunctions fonormal basis of eigenfunctio{$} obeying the condition

(k& —k2) )jaFK‘AFNdeZO. (14

Ro(a,a
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f T FuFndp= Sy - (19
Ro(a,a)
D. Perturbation theory

The coefficient<C, | in Eq.(9) and the eigenvaludg can
be obtained by perturbation theorylitca (a—1). In this

case, the lens cap represents a perturbation from the se

spherical geometry. In other words, the operdfrcan be
rewritten in the form

(Ho+Hp)F(u,v)=0, (16)
with
) m?—1/4
Ho(u,0)=V{, )+ k22— 5 , (17)
u
J(uv) 1
Hp(u,0) =K J,(u,v)— 1]—(m2—1/4)(m_ F) _

(18)

The operatoH , vanishes whemr— 1 (b—a) and it can be

PHYSICAL REVIEW B 63 125319

The states oH, are degenerate on the quantum numier
Nevertheless, according to E@®),

(n,I,m[Hy[n" 1", m")y=(n,I[Hy[n" ") 6, (20)

o that the matrix elements are diagonalmrand we can

evelop a perturbation theory in the absence of degeneracy.
We represent the coefficien®, | and its eigenvaluel’ in a
power series of the small parametere=a 1—1 (which
arises naturally from the expressions in Appendix We
obtain up to first order in. an expression for the wave func-
tions given by

1 a7,
_(0) = @
Fum(p, ) =f11(p,0)+\ 2<n,| ( N )}\_0 n,|>
xtQp,0)+ > 9.(p,0)
' n’1"#n, '
1

1)k

considered as a small perturbation operator, when the height

bis close to the radiua. The set{f{})} given by Eq.(4) are

the eigenfunctions of the Hamiltoniddh, in the )V space and
form an orthonormal basis on tl®,(a,a) domain. In order

to find the solution of Eq(16) as a function of the ratib/a,

we will develop a modified Rayleigh-Schiimger perturba-

tion theory. We note that the perturbation Hamiltonidp

depends on the eigenvall, and as such requires a some-

what different approach. Substituting H§) in Eq. (16) we
obtain

[(k2=K3)+(n,I[Hy(k?)|n,1)]Cy

+ 2 (nIHu(K®)n'1)Cpr i =0.  (19)
n',I"#n,
2 _ 2 0T a
ki(N,m)= <n,| ko(n,l)( N

T,

a[J
n',l’ kﬁ(n,l)( ) —(m2—1/4)—(—a)
N, o ON\ x2 o

aJ,
x(n',I’ kg(n,l)( “)
< o

a[J
—(m2—1/4)—(—) n,I>
IN | x2

al \=0

We find for the eigenvalues up to second order, that

. (21

9? 9?
‘Z") —(m2—1/4)—2<i§)
N, IN\XG)

K2(n’,1") —k3(n,1)

|>

K2(N,m)=k2(n,1)+AK3(N,m) + \2k5(N,m), (22
where
a [ J.
—(m2—1/4)—(—“) nl), (23
)FO N\ A=0 >
2
n,I>
4% 1 ﬁja
_§<n,| ki(N,m)( P A=0+k§(n,|)
(24
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~Nm) - T tion of the ratiob/a. The different eigenvalue curves are
82" (a) Quantum lens 1 labeled by the quantum numbersl,fm). The semisphere
case p/a=1) is indicated by the limiting value on the right
vertical axis in each panel. One can see the breaking of de-
generacy in the quantum numbrey and the strong deviation
from the semispherical case, as the rditla decreases. The
lower levels exhibit a weaker dependence on the decreasing
b/a ratio, while the upper levels are strongly deviated from
the semispherical case. In Figh2the first five energy levels
calculated up to first¢dotted line$ and second-orde(solid
lines) perturbation on the parametirare compared in the
range 0.4&b/a<1. It can be seen that a strong deviation is
R R TP S R present for the higher excited leveld € 3 and 4, while for
0.4 0.5 05 0.7 08 0.9 N=1 and 2 the obtained results using E83) (first order
Ratio b/a perturbation theory give a deviation smaller than 1% in
—TT——T———T1— comparison with those using E(R4) (second-order pertur-

T bation results As a comparison, we calculate the absolute
value for the electron ground-state enekgf an InAs quan-
tum dot witha=200 A andm*/m,=0.023. In the semi-
spherical case one geis=83.3 meV, while for the lens we
obtain E=96.9, 108.8, and 128.7 meV, ftw/a=0.9, 0.8,
and 0.7, respectively. This variation of the lowest-energy
values illustrates the strong influence of the lens geometry on
the electronic levels.

The radial and angular probability density function in a
given stateN,m are defined as

160 -

120 -

Energy levels (units of Eo)

160 i N,m) ®) i

140 -

80 -

Energy levels (units of Eo)

60 [
4l

20 -

0a 05 o8 07 08 oo wl2
Ratio b/a PN,m(P)Zf0 |Fn.m(p, 0)]?pdo,

FIG. 2. Energy levelsEy,n(b/a), labeled by N,m), for a
guantum lens as a function of the ralita. The energies are given
in units of Eq=#%2/(2m*a?). (a) The first 13 energy levels calcu-
lated up to second order in perturbation theaity. Comparison a
between results calculated up to firétlotted lineg and second- Pr,m( 0)=f [Fn.m(p, 0)]%pdp. (26)
order (solid) perturbation theory for the first five levels. 0

The different factors included in the geometric perturbation

( ﬁja) ( azja> & \-7{,\/ &2 ja)
IN )y o'\ a2 x:o,m\ x? Azo'axz x? o
(25

are also given in Appendix A. In the framework of the infi- Ng
nite confinement model, the parameter dependence of Egs. X
(21)—(24) is known, since the matrix elements play the role x[1+>\ —<n,| (—“) n,|>

of constants and need to be evaluated only once. Note also IN |y —o

that the above expressions are not the same as those found in o 0T PI™(cosd)

a typical perturbation theory, as the difference arising in the +f dosin 0( “) ('—> :
k? term depends on the perturbation Hamiltonky, which 0 N, N m

itself depends on the parameter

The functionsP(p) and P(#) are obtained up to first-order
perturbation theory on according to the equations

Iy mpla)|?
Prm(p)=p|l —

Il. THE EIGENVALUES AND WAVE FUNCTIONS
. . ) ) pe(0a) (27
Figure Za) shows the first 13 energy levels in units of

E,=%2/(2m* a®) for a quantum lens calculated by perturba-
tion theory up to the second orderlin=a -1, as a func- and
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25

20
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20

Radial probability density (units of a™)
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PHYSICAL REVIEW B 63 125319

@

NLm=0) |

g FIG. 3. (a) The radial probability density in a
: quantum lensPy n(p), in units ofa?!, for dif-
ferent electronic stated\(m), and as function of

the dimensionless coordinate= p/a. (b) The an-
gular probability densityPy (6) as function of

the angled. Two values of the ratid/a are con-

7 sidered: b/a=1 (solid lines and b/a=0.509
(dotted lineg. The calculations were based on the
A perturbation theory described by Eg®7) and
(28). Different states Kl,m)=(1,0), (4,0), (8,0,

J and(8,2) are indicated.

0.2

+fad (ﬂ_%) (J|+1/2(Mn
0 pp (9)\ )\70 NB

0e(0,m/2).

(1

0.2

pla)

|

04

p/a

(28)

1(b)]. For all states, the maximum d?(p) is smoothly
shifted towardsp=0, except for level(8,2). The different
behavior observed for the radial and angular probability den-
sities can be seen as arising from the fact that the geometry
of the quantum dot is essentially decreasing in radius and not
in angle, ad/a decreases. The radial probability is obtained
by integration along the angle in all directions <@
</2), taking into account the angular contribution for a
givenp and certain geometry. On the other hand, the angular
probability is calculated by taking the integration along the
radius where the change of geometry is more important.
Hence, one can say that the angular probability der(#)

Figures 3a) and 3b) show the radial and angular probabili- contains more information about_the changing cap geometry
ties given by Eqs(27) and (28), respectively. In both cases than the functiorP(p), as a function ob/a.

the levels considered ardN(m)=(1,0), (4,0, (8,0, and
(8,2. Solid lines represent the semispherical casa€ 1),
while the quantum cap with/a=0.509 is shown by dotted
lines, and illustrates the departure from the semispheric

Finally, a test for the viability to obtain the wave func-
tions and energies by the perturbation method, is given by
the ratio between the matrix element of the perturbation
ditamiltonian (n,I|H (7, ,m)|n,I) with respect to the non-

case for decreasing/a ratio. In the case of the radial prob- Perturbed dimensionless enerigy,

ability, the deviation observed when the ratita decreases
is relatively small, in comparison with the semispherical cap.
In contrast, the angular probability shows a rather strong
deviation as a function di/a, as the maximum probability is

_ K.l Hg( T mIn,D)

k2(n,l) 9

N,m

shifted towardsf= /2, that is, the carrier is located more The parametedy ,, was calculated for the levels of Fig. 2
towards the plane =0, as the cap height decreagsse Fig. and is shown in Fig. 4 as a function bofa. A necessarybut
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(N=4,m=0)

1.2

1.0

0.8

06

o
&

o
»

——————T—T—T— L FIG. 3. (Continued.
(N=8,m=0) (N=8,m=2)

Angular Probab. Density

Angle(0) Angle(0)

not sufficieny condition for the perturbation theory to be ing more realistic self-assembled quantum dots, which may
valid is thatAy , must be less than the unity, and this crite- include effects of band nonparabolicity, strain distributions,
rion is fulfilled for the range 04b/a<1. Another more or other effects on the electronic levels of the lens. The re-
restrictive condition for the applicability of this method is ported transformation can be also extended straightforwardly
that (n,I|H,(J,,m)n",1"y<|K5(n,1)—k5(n’,1")|, saying to different physical models, such as phonon modes fulfilling
that the differences between nonperturbed dimensionless etheir characteristic differential equations. The proposed con-
ergy states need to be larger than the matrix elements of tifermal image maps the lens boundary into a dot with a semi-
perturbation. A more complete, nonperturbation, solution ofspherical shape, allowing one to obtain a complete set of
Eg. (7) is needed to completely assess the validity of theorthonormal functions to characterize the physical problem
perturbation approach. However, one can be confident thaeeping the full lens symmetry. We have applied the formal-
for small\ values, the eigenstates and eigenfunctions foundsm to the eigenvalue and eigenfunction of the Sdhrger
represent an accurate solution to the problem, as the pertuproblem in a spherical cap geometry. The conformal map-
bation and the small parameter is well defined, and the proping of the equation allows a modified but well-defined
cedure robust. Rayleigh-Schrdinger perturbation approach, where the cap
height to in-plane radius is used to define the small param-
eter of the theory.

We find that the wave functions are strongly shifted to-

We have presented a formal and systematic conformalards the flat face, as the height of the lens decreases, while
analytical map model to describe quantum dots with lenghe radial dependence is not affected as much. This change in
geometry and circular cross section arising in the growth othe wave functions is interesting on its own, as it reflects the
low-dimensional semiconductor systems. The method can behanges produced by the appropriate operator after the con-
directly extended to study 2D differential equations describformal mapping. Moreover, these changes may have impor-

IV. CONCLUSIONS
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(A1)

(A2)

(A3)

(A4)

T T T T T T T T APPENDIX A
1 The Jacobian of the transformatidti( 2) is given by
0.8 - .
16(1/a)?
o0 0) = e Ta 172 2
R+ 2+ 2RV cog ¢/ a) |
0.6 - 4
g
Z
< and the term7, /X2 can be cast as
04| .
Talr,6) 16(1/a)?
02} . Xo(r,0) R gl
In the above equations we have defined
1 N 1 N 1 L 1 L 1 L 1 N
0.4 0.5 0.6 0.7 0.8 0.9 1.0 2 .
r=pla;, f.=1+r“*x2rsing; R=F f_,
Ratio b/a and
FIG. 4. Ratio between the matrix element and the energy
k2(n,l) with respect to the ratib/a of the quantum lens, E429).
For all b/a between 0.4 and 1 the parameteiis small. arc 5{ 2r COS@) .
_ 2 |
= —r
tant consequences for the different electronic and optical 2 =1
w2; r=

properties of self-assembled quantum dots. We are currently
studying those properties and will report our findings in the .
future. The reported energy dependence on cap height forom Egs.(Al) and(A2), it follows that
in-plane radius and semiconductors parameters can be useful

to characterize the geometrical dimensions of these semicon- (1. 0) 1
ductor nanostructures. Tuea(r,0)=1; o = ,
Xir,0)) . r?sire
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d [ J,(r,0) _Arsing—(1+r?)In(f, /)
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