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Electronic states in a quantum lens
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We present a model to find analytically the electronic states in self-assembled quantum dots with a truncated
spherical cap~‘‘lens’’ ! geometry. A conformal analytical image is designed to map the quantum dot boundary
into a dot with semispherical shape. The Hamiltonian for a carrier confined in the quantum lens is correspond-
ingly mapped into an equivalent operator and its eigenvalues and eigenfunctions for the corresponding Dirich-
let problem are analyzed. A modified Rayleigh-Schro¨dinger perturbation theory is presented to obtain analyti-
cal expressions for the energy levels and wave functions as a function of the spherical cap heightb and radius
a of the circular cross section. Calculations for a hard wall confinement potential are presented, and the effect
of decreasing symmetry on the energy values and eigenfunctions of the lens-shape quantum dot is studied. As
the degeneracies of a semicircular geometry are broken forbÞa, our perturbation approach allows tracking of
the split states. Energy states and electronic wave functions withm50 present the most pronounced influence
on the reduction of the lens height. The method and expressions presented here can be straightforwardly
extended to deal with more general Hamiltonians, including strains and valence-band coupling effects in Group
III–V and Group II–VI self-assembled quantum dots.

DOI: 10.1103/PhysRevB.63.125319 PACS number~s!: 73.61.2r, 73.21.2b, 03.65.Ge, 78.30.Fs
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I. INTRODUCTION

Quantum dots obtained by interrupted growth in strain
semiconductor interfaces are currently under intense s
by many experimental and theoretical groups.1 These ‘‘self-
assembled’’ quantum dots are mostly dislocation free, coh
ent islands of deposited material on the surface of a diffe
semiconductor. The lattice mismatch from one semicond
tor to the other forces the segregation of material whene
the epitaxial growth exceeds a critical layer thickness, res
ing in the growth of these so-called Stranski-Krastan
islands.2 Deposition of material past a critical thicknes
which depends on the two materials used, results in la
arrays of small islands with a rather narrow size distribut
~with size variations well under 10%!, and typically arranged
randomly on the plane~although avoiding overlapping is
lands, for the most part!.1 More recently, some groups ar
working at producing in-plane ordering of islands followin
different approaches, including ‘‘nucleation site engine
ing’’ to favor certain locations for self-assembled d
growth.3 These self-assembled quantum dots have, for
most part, a large area-to-height aspect ratio. In the cas
InAs islands grown on a GaAs surface, the in-plane dia
eters are typically less than 30 nm, while their heights
below 10 nm.4 Different techniques used to study the sha
and size of these dots suggest, although not without s
controversy, that the InGa/GaAs self-assembled quan
dots are lens shaped,5–8 characterized by a spherical ca
shape with circular cross section. Upon optical or oth
mechanisms of carrier injection, both electrons or holes h
bound well-confined states inside these dots.

In fact, optical experiments on self-assembled dots de
onstrate that these structures provide strong carrier con
ment, as decreasing dot size produces strong blueshift o
0163-1829/2001/63~12!/125319~9!/$15.00 63 1253
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extremely narrow luminescence peaks inisolated dots.9–13

Confinement effects have also been shown to appear in m
netocapacitance and infrared absorption experiments by
eral groups.14–17Clear evidence of electronic shell states a
their different degeneracies has been reported recently,18 and
applications such as storage of photoluminescence sig
was demonstrated recently in gate-activated ‘‘opti
memories.’’19

Simplifying the symmetry of the lens as a two
dimensional harmonic oscillator has been suggested to c
acterize the level structure for charge carriers in the dots,
this has proven useful in the interpretation of experiment20

Nevertheless, as we will show here, a lens geometry
quite a different level structure and wave functions w
subtle symmetries, which might be seen in experiments.
example, we find that as the height of the cap or lens
creases, there is a larger shift of the wave function towa
the plane of the lens~in comparison with the situation in a
semispherical geometry!. This shift becomes stronger fo
‘‘flatter’’ lenses, and may even give rise to deconfinement
the state towards the substrate, for finite confinement po
tial, changing significantly the oscillator strength of electro
hole transitions, for example.21 However, even before tha
occurs, the smaller height lens geometries exhibit a differ
level structure than the harmonic oscillator, as we show
low. This structure may give rise to different Pauli blockin
effects and transition rules, topics which are the subjec
interest in recent experiments.22

In this paper we rigorously show that a complete set
wave functions can be generated with the correct lens s
metry, and used to describe the physical properties given
the differential equation of interest. For the sake of simpl
ity, we have applied our calculation here to the sing
particle Schro¨dinger equation. The incorporation of nonpar
©2001 The American Physical Society19-1
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bolic band dispersion or many-particle interactions
straightforward~if only a bit cumbersome!. Although it is
well known that strain effects are determinant in the desc
tion level structure of realistic self-assembled quant
dots,23 the scope of the present paper is focused on the s
pler single-particle Schro¨dinger equation. This provides th
simplest proof of the conformal analytical transformation a
proach, mapping the dot lens geometry into a semisphe
boundary. Notice that while our calculation provides an a
lytical approach to the understanding of electronic state
these structures, it also provides an interesting example
generalization of perturbation theory for the conform
mapped differential operator arising from the Schro¨dinger
equation in the material. Since the conformal transformat
used to map the lens into the semispherical geometry is n
trivial, the resulting differential equation in the transform
space reflects that complexity. Fortunately, our perturba
approach is robust for the identified small parameter of
problem, as we will show.

The remainder of the paper is structured as follows:
Sec. II we introduce the problem of the spherical cap geo
etry, its semispherical limit, and the conformal map whi
connects the two shapes. In that section, we also describ
perturbation approach needed to carry out the solution of
appropriately mapped Schro¨dinger operator, and explore th
orthonormalization conditions of the basis used in the
scription of the general problem. In Sec. III we present so
examples of the eigenstates for varying lens size, and ana
their angular and radial distribution functions. Section
presents some discussions and conclusions, while the ap
dix contains details of the expansion described in Sec. II

II. DIRICHLET PROBLEM FOR A QUANTUM LENS:
CONFORMAL MAPPING

The shape of the quantum lens in realr space is shown in
Fig. 1~a!. R3(a,b) denotes the domain of the lens wi
boundary inr space given by a spherical cap of heightb and
circular cross section with radiusa. Assuming a carrier
Hamiltonian model with isotropic band and effective ma

FIG. 1. ~a! Lens cap of heightb and radiusa. ~b! Conformal
mapping fromZ to W.
12531
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m* , the eigenvalue problem for a particle confined in t
lens is described by the operator

Ĥ52
\2

2m*
“ r

2 ; rPR3~a,b!, ~1!

obeying the Dirichlet boundary conditionc50 for r
PL3(a,b). L3(a,b) is the boundary of theR3(a,b) domain.
The operator~1! presents axial symmetry and all function
defined onR3(a,b) have the propertyf(w)5f(w12p),
wherew is the axial angle. Hence, the solution of Eq.~1! can
be written as

c~r!5 f̃ ~r!
eimw

A2p
; m50,61,62, . . . , ~2!

wherer is a two-dimensional~2D! vector. Correspondingly
the operator~1! is transformed into an eigenvalue proble
for the functionf (r)5Ar sinu f̃(r),

F“r
21S ko

22
m221/4

r2 sin2u
D G f ~r!50; rPR2~a,b!, ~3!

whereko
252m* E/\2, E is the energy of the eigenfunctio

f (r), u is the polar angle,“r
2 is expressed in circular coor

dinates, andR2(a,b) is the 2D domain with boundary
L2(a,b) in ther space shown in Fig. 1~b!. The Hilbert space
where the operator~3! is defined corresponds to the set
functions f (r)PR2(a,b) with boundary conditionf (r)50
on L2(a,b).

A. Semispherical quantum dot

For the case ofb5a, the lens shape of Fig. 1~a! has
semispherical symmetry. Hence, the Dirichlet problem in E
~3! reduces to the conditionsf (a,u)50, and f (r,p/2)50.
The set$ f i% of eigenfunctions of Eq.~3! on theR2 domain
forms an orthonormal basis with functions, which in pol
coordinates are given by products of the associate Lege
polynomials and Bessel functions,

f n,l
(0)~r,u!5Asinu

Pl
umu~cosu!

Nl ,m

Jl 1 1/2@~mn
( l )/a!r#

NB
, ~4!

with l 50,1,2, . . . , and thecondition 2 l<m< l . The nor-
malization constantsNl ,m andNB are as usual given by

Nl ,m5A 1

2l 11

~ l 1umu!!
~ l 2umu!!

; NB5
a

A2
Jl 1 1/28 ~mn

( l )!, ~5!

where Jq8 is the derivative of the Bessel functionJq , and
mn

(p) is the nth zero,Jp11/2(mn
(p))50. The eigenvalues are

given byEn,l5\2(mn
( l ))2/(2m* a2), and the boundary condi

tion f (0)(r,u5p/2)50 restricts the values of the quantu
numbersl and m to fulfill the condition u l 2mu5odd. Ac-
9-2
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ELECTRONIC STATES IN A QUANTUM LENS PHYSICAL REVIEW B63 125319
cording to this condition, the degeneracy of statesf n,l
(0) for a

given energyEn,l is equal tol and the ground state corre
sponds tol 51, m50, andn51.

B. Quantum lens

The quantum dot with lens shape corresponds to the m
general case whenb,a. Here, we need to fulfill Eq.~3! with
the Dirichlet condition over the boundaryL2(a,b). The
wave functionsf n,l

(0) given by Eq.~4! are not a solution for the
general case, because the problem has no longer the sem
cular symmetry inu. The energy numbern and angular mo-
mentuml are clearly no longer good quantum numbers wh
bÞa and the m degeneracy is broken. To obtain an ana
cal solution of the problem~3! it is convenient to make a
conformal mapping to the circular cap with domainR2(a,a)
and boundaryL2(a,a). The mapping enables us to solve t
Dirichlet problem for the operator given by Eq.~3! in a Hil-
bert space where an orthonormal basis$ f i% is known. We
transform the quantum lens domain and boundary into a
with semispherical shape, so that the circular cap defined
the domainZ5x2 izPR2(a,b), transforms into the semicir
cular domainW5u2 ivPR2(a,a). This is accomplished by
the transformation@see Fig. 1~b!#

W~Z!5
2a

11@~a2Z!/~a1Z!#a
2a; a5

p/4

arctan~b/a!
.

~6!

In the complex planeW, we have the parameter equation
u5r sinu, v5r cosu, 0,r,a, and 0,u,p/2. The eigen-
value problem~3! is thus transformed by this conforma
mapping into the problem

“ (u,v)
2 F~u,v !1Ja~u,v !S k22

m221/4

X a
2~u,v !

D F~u,v !50;

~u,v !PR2~a,a!, ~7!

with the boundary condition,

F~u,v !u(u,v)PL2(a,a)50. ~8!

The functions Ja(u,v)5udZ/dWu2 ~the Jacobian! and
Ja /X a

2 are given in Appendix A, and are mathematical o
jects that contain the information of the lens geomet
where the subscripta is given in Eq.~6!. It should be noted
thata>1, sinceb<a, and fora51 the JacobianJa reduces
to 1, whileJa /X a

2 reduces to 1/u251/(r sinu)2.
The Hilbert space on which the operator~7! is defined

must fulfill the Dirichlet boundary conditions on a semic
cular domain, as indicated in Eq.~8!. Thus, the set of func-
tions that fulfill the conditions for the Hilbert space defin
through Eq.~8! are the functionsf n,l

(0) given in Eq.~4!, and
represent a complete set of orthonormal eigenfunctions
12531
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the operator in Eq.~7!. Hence, the general solutionF(u,v)
for a givenm is given in term of the set$ f n,l

(0)% such that

F5(
n,l

Cn,l f n,l
(0)~r!, ~9!

wherer5(r,u) is here the parametrization of (u,v), and the
functions f n,l

(0) are restricted to the conditionu l 2mu5odd.
The coefficientsCn,l have to be determined to satisfy the fu
operator and different approaches can be employed to
complish this ~e.g., matrix diagonalization techniques!. A
perturbation procedure, allowing to obtain the eigenfunctio
F and eigenvaluesk2, is described in Sec. II D below.

C. Orthogonality and completeness

Equation~7! can be cast in operator form as

K̂F5J ak2F, ~10!

where K̂ involves the Laplace operator,2“ (u,v)
2 , and the

term (m221/4)Ja /X a
2(u,v). Equation~10! is an eigenvalue

problem for the dimensionless energieskN
2 (m), whereN is a

generic label for the different eigenstatesFN of Eq. ~10!. Let
us now suppose thatN andM correspond to different eigen
values of Eq.~10!. From the above equation it follows tha

FM* K̂FN2FNK̂* FM* 5Ja~kN
2 2kM

2 !FM* FN . ~11!

Making the integration overr(u,v) in the R2(a,a) domain,
we obtain that

E
R2(a,a)

@2FM* “ (u,v)
2 FN1FN“ (u,v)

2 FM* #d2r

5~kN
2 2kM

2 !E
R2(a,a)

FM* FNJ ad2r. ~12!

Integration by parts gives us

~kN
2 2kM

2 !E
R2(a,a)

JaFM* FNd2r5~FN“FM*

2FM* “FN!u(u,v)PL2(a,a) , ~13!

which due to the boundary condition~8!, it is reduced to

~kN
2 2kM

2 !E
R2(a,a)

JaFM* FNd2r50. ~14!

For NÞM , condition~14! represents the orthogonality prop
erty of the eigenfunction set$FN%, whereJa is clearly the
weighting factorof the eigenproblem~7!. Moreover, the op-
erator K̂ is Hermitian, ensuring that the solution of th
present problem is described by means of a complete or
normal basis of eigenfunctions$FN% obeying the condition
9-3



e

ig

e-

acy.

-
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E
R2(a,a)

JaFM* FNd2r5dN,M . ~15!

D. Perturbation theory

The coefficientsCn,l in Eq. ~9! and the eigenvaluesk2 can
be obtained by perturbation theory ifb'a (a→1). In this
case, the lens cap represents a perturbation from the s
spherical geometry. In other words, the operator~7! can be
rewritten in the form

~Ho1Hp!F~u,v !50, ~16!

with

Ho~u,v !5“ (u,v)
2 1S k22

m221/4

u2 D , ~17!

Hp~u,v !5k2@Ja~u,v !21#2~m221/4!S Ja~u,v !

X a
2~u,v !

2
1

u2D .

~18!

The operatorHp vanishes whena→1 (b→a) and it can be
considered as a small perturbation operator, when the he
b is close to the radiusa. The set$ f n,l

(0)% given by Eq.~4! are
the eigenfunctions of the HamiltonianHo in theW space and
form an orthonormal basis on theR2(a,a) domain. In order
to find the solution of Eq.~16! as a function of the ratiob/a,
we will develop a modified Rayleigh-Schro¨dinger perturba-
tion theory. We note that the perturbation HamiltonianHp
depends on the eigenvaluek2, and as such requires a som
what different approach. Substituting Eq.~9! in Eq. ~16! we
obtain

@~k22ko
2!1^n,l uHp~k2!un,l &#Cn,l

1 (
n8,l 8Þn,l

^n,l uHp~k2!un8,l 8&Cn8,l 850. ~19!
12531
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The states ofHo are degenerate on the quantum numberm.
Nevertheless, according to Eq.~2!,

^n,l ,muHpun8,l 8,m8&5^n,l uHpun8,l 8&dm,m8 , ~20!

so that the matrix elements are diagonal onm and we can
develop a perturbation theory in the absence of degener
We represent the coefficientsCn,l and its eigenvaluesk2 in a
power series of the small parameterl5a2121 ~which
arises naturally from the expressions in Appendix A!. We
obtain up to first order inl an expression for the wave func
tions given by

FN,m~r,u!5 f n,l
(0)~r,u!1lF2

1

2 K n,lUS ]Ja

]l D
l50

Un,l L
3 f n,l

(0)~r,u!1 (
n8,l 8Þn,l

f n8,l 8
(0)

~r,u!

3
1

ko
2~n8,l 8!2ko

2~n,l !

3K n8,l 8Uko
2~n,l !S ]Ja

]l D
l50

2~m221/4!
]

]l S Ja

X a
2 D

l50

Un,l L G . ~21!

We find for the eigenvalues up to second order, that

k2~N,m!5ko
2~n,l !1lk1

2~N,m!1l2k2
2~N,m!, ~22!

where
k1
2~N,m!52K n,lUko

2~n,l !S ]Ja

]l D
l50

2~m221/4!
]

]l S Ja

X a
2 D

l50

Un,l L , ~23!

k2
2~N,m!52 (

n8,l 8Þn,l

K n8,l 8Uko
2~n,l !S ]Ja

]l D
l50

2~m221/4!
]

]l S Ja

X a
2 D

l50

Un,l L 2

ko
2~n8,l 8!2ko

2~n,l !
2

1

2 K n,lUk1
2~N,m!S ]Ja

]l D
l50

1ko
2~n,l !

3S ]2Ja

]l2 D
l50

2~m221/4!
]2

]l2 S Ja

X a
2 D

l50

Un,l L . ~24!
9-4
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The different factors included in the geometric perturbati

S ]Ja

]l D
l50

,S ]2J a

]l2 D
l50

,
]

]l S Ja

X a
2 D

l50

,
]2

]l2 S Ja

X a
2 D

l50
~25!

are also given in Appendix A. In the framework of the in
nite confinement model, the parameter dependence of
~21!–~24! is known, since the matrix elements play the ro
of constants and need to be evaluated only once. Note
that the above expressions are not the same as those fou
a typical perturbation theory, as the difference arising in
k2 term depends on the perturbation HamiltonianHp , which
itself depends on the parameterl.

III. THE EIGENVALUES AND WAVE FUNCTIONS

Figure 2~a! shows the first 13 energy levels in units
Eo5\2/(2m* a2) for a quantum lens calculated by perturb
tion theory up to the second order inl5a2121, as a func-

FIG. 2. Energy levelsEN ,m(b/a), labeled by (N,m), for a
quantum lens as a function of the ratiob/a. The energies are given
in units of E05\2/(2m* a2). ~a! The first 13 energy levels calcu
lated up to second order in perturbation theory.~b! Comparison
between results calculated up to first-~dotted lines! and second-
order ~solid! perturbation theory for the first five levels.
12531
,

s.

lso
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e

tion of the ratiob/a. The different eigenvalue curves ar
labeled by the quantum numbers (N,m). The semisphere
case (b/a51) is indicated by the limiting value on the righ
vertical axis in each panel. One can see the breaking of
generacy in the quantum numberm, and the strong deviation
from the semispherical case, as the ratiob/a decreases. The
lower levels exhibit a weaker dependence on the decrea
b/a ratio, while the upper levels are strongly deviated fro
the semispherical case. In Fig. 2~b! the first five energy levels
calculated up to first-~dotted lines! and second-order~solid
lines! perturbation on the parameterl are compared in the
range 0.4<b/a<1. It can be seen that a strong deviation
present for the higher excited levels (N53 and 4!, while for
N51 and 2 the obtained results using Eq.~23! ~first order
perturbation theory! give a deviation smaller than 1% i
comparison with those using Eq.~24! ~second-order pertur
bation results!. As a comparison, we calculate the absolu
value for the electron ground-state energyE of an InAs quan-
tum dot with a5200 Å andm* /mo50.023. In the semi-
spherical case one getsE583.3 meV, while for the lens we
obtain E596.9, 108.8, and 128.7 meV, forb/a50.9, 0.8,
and 0.7, respectively. This variation of the lowest-ener
values illustrates the strong influence of the lens geometry
the electronic levels.

The radial and angular probability density function in
given stateN,m are defined as

PN,m~r!5E
0

p/2

uFN,m~r,u!u2rdu,

PN,m~u!5E
0

a

uFN,m~r,u!u2rdr. ~26!

The functionsP(r) and P(u) are obtained up to first-orde
perturbation theory onl according to the equations

PN,m~r!5rS Jl 11/2~mn
( l )r/a!

NB
D 2

3H 11lF2K n,lUS ]Ja

]l D
l50

Un,l L
1E

0

p/2

du sinuS ]Ja

]l D
l50

S Pl
umu~cosu!

Nl ,m
D 2G J ;

rP~0,a! ~27!

and
9-5
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FIG. 3. ~a! The radial probability density in a
quantum lensPN,m(r), in units of a21, for dif-
ferent electronic states (N,m), and as function of
the dimensionless coordinater 5r/a. ~b! The an-
gular probability densityPN,m(u) as function of
the angleu. Two values of the ratiob/a are con-
sidered: b/a51 ~solid lines! and b/a50.509
~dotted lines!. The calculations were based on th
perturbation theory described by Eqs.~27! and
~28!. Different states (N,m)5(1,0), ~4,0!, ~8,0!,
and ~8,2! are indicated.
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PN,m~u!5sinuS Pl
umu~cosu!

Nl ,m
D 2

3H 11lF2K n,lUS ]Ja

]l D
l50

Un,l L
1E

0

a

dr rS ]Ja

]l D
l50

S Jl 11/2~mn
( l )r/a!

NB
D 2G J ;

uP~0,p/2!. ~28!

Figures 3~a! and 3~b! show the radial and angular probabi
ties given by Eqs.~27! and ~28!, respectively. In both case
the levels considered are (N,m)5(1,0), ~4,0!, ~8,0!, and
~8,2!. Solid lines represent the semispherical case (b/a51),
while the quantum cap withb/a50.509 is shown by dotted
lines, and illustrates the departure from the semispher
case for decreasingb/a ratio. In the case of the radial prob
ability, the deviation observed when the ratiob/a decreases
is relatively small, in comparison with the semispherical c
In contrast, the angular probability shows a rather stro
deviation as a function ofb/a, as the maximum probability is
shifted towardsu5p/2, that is, the carrier is located mor
towards the planev50, as the cap height decreases@see Fig.
12531
al

.
g

1~b!#. For all states, the maximum ofP(r) is smoothly
shifted towardsr50, except for level~8,2!. The different
behavior observed for the radial and angular probability d
sities can be seen as arising from the fact that the geom
of the quantum dot is essentially decreasing in radius and
in angle, asb/a decreases. The radial probability is obtain
by integration along the angle in all directions (0,u
,p/2), taking into account the angular contribution for
givenr and certain geometry. On the other hand, the ang
probability is calculated by taking the integration along t
radius where the change of geometry is more importa
Hence, one can say that the angular probability densityP(u)
contains more information about the changing cap geom
than the functionP(r), as a function ofb/a.

Finally, a test for the viability to obtain the wave func
tions and energies by the perturbation method, is given
the ratio between the matrix element of the perturbat
Hamiltonian ^n,l uHp(Ja ,m)un,l & with respect to the non-
perturbed dimensionless energyko

2 ,

DN,m[
u^n,l uHp~Ja ,m!un,l &u

ko
2~n,l !

. ~29!

The parameterDN,m was calculated for the levels of Fig.
and is shown in Fig. 4 as a function ofb/a. A necessary~but
9-6
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FIG. 3. ~Continued!.
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con-
or-
not sufficient! condition for the perturbation theory to b
valid is thatDN,m must be less than the unity, and this crit
rion is fulfilled for the range 0.4,b/a,1. Another more
restrictive condition for the applicability of this method
that ^n,l uHp(Ja ,m)un8,l 8&,uko

2(n,l )2ko
2(n8,l 8)u, saying

that the differences between nonperturbed dimensionless
ergy states need to be larger than the matrix elements o
perturbation. A more complete, nonperturbation, solution
Eq. ~7! is needed to completely assess the validity of
perturbation approach. However, one can be confident
for small l values, the eigenstates and eigenfunctions fo
represent an accurate solution to the problem, as the pe
bation and the small parameter is well defined, and the p
cedure robust.

IV. CONCLUSIONS

We have presented a formal and systematic confor
analytical map model to describe quantum dots with le
geometry and circular cross section arising in the growth
low-dimensional semiconductor systems. The method ca
directly extended to study 2D differential equations desc
12531
n-
he
f
e
at
d

ur-
o-

al
s
f

be
-

ing more realistic self-assembled quantum dots, which m
include effects of band nonparabolicity, strain distribution
or other effects on the electronic levels of the lens. The
ported transformation can be also extended straightforwa
to different physical models, such as phonon modes fulfill
their characteristic differential equations. The proposed c
formal image maps the lens boundary into a dot with a se
spherical shape, allowing one to obtain a complete se
orthonormal functions to characterize the physical probl
keeping the full lens symmetry. We have applied the form
ism to the eigenvalue and eigenfunction of the Schro¨dinger
problem in a spherical cap geometry. The conformal m
ping of the equation allows a modified but well-define
Rayleigh-Schro¨dinger perturbation approach, where the c
height to in-plane radius is used to define the small para
eter of the theory.

We find that the wave functions are strongly shifted
wards the flat face, as the height of the lens decreases, w
the radial dependence is not affected as much. This chang
the wave functions is interesting on its own, as it reflects
changes produced by the appropriate operator after the
formal mapping. Moreover, these changes may have imp
9-7
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tant consequences for the different electronic and opt
properties of self-assembled quantum dots. We are curre
studying those properties and will report our findings in t
future. The reported energy dependence on cap heigh
in-plane radius and semiconductors parameters can be u
to characterize the geometrical dimensions of these semi
ductor nanostructures.
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FIG. 4. Ratio between the matrix element and the ene
ko

2(n,l ) with respect to the ratiob/a of the quantum lens, Eq.~29!.
For all b/a between 0.4 and 1 the parameterD is small.
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APPENDIX A

The Jacobian of the transformationW(Z) is given by

Ja~r ,u!5
16~1/a!2

R121/a@ f 1
1/a1 f 2

1/a12R1/2a cos~f/a!#2
,

~A1!

and the termJa /X a
2 can be cast as

Ja~r ,u!

X a
2~r ,u!

5
16~1/a!2

R121/a@ f 1
1/a2 f 2

1/a#2
. ~A2!

In the above equations we have defined

r 5r/a; f 6511r 262r sinu; R5 f 1 f 2 , ~A3!

and

f5H arctgS 2r cosu

12r 2 D ; r ,1

p/2; r 51.

~A4!

From Eqs.~A1! and ~A2!, it follows that

Ja51~r ,u![1 ; S Ja~r ,u!

X a
2~r ,u!

D
a51

[
1

r 2 sin2u
, ~A5!

as one would expect.
Finally, the geometric perturbation factors in Eq.~25! are

given by

y

S ]Ja~r ,u!

]l D
l50

522r sinu ln~ f 1 / f 2!12fr cosu, ~A6!

]

]l S Ja~r ,u!

X a
2~r ,u!

D
l50

5
4r sinu2~11r 2!ln~ f 1 / f 2!

2r 3 sin3u
, ~A7!

S ]2Ja~r ,u!

]l2 D
l50

5
1

2 S ]Ja

]l D
l50

F3S ]Ja

]l D
l50

28G2
~11r 2!

4
ln2~ f 1 / f 2!1f2~12r 2!12 ln2R, ~A8!

]2

]l2 S Ja~r ,u!

X a
2~r ,u!

D
l50

5
~4r sinu!2216r sinu~11r 2!ln~ f 1 / f 2!

8r 4 sin4u
1

@2~11r 2!21R# ln2~ f 1 / f 2!

8r 4 sin4u
. ~A9!
9-8
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